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Abstract. Verified compilers like CompCert and CakeML offer increas-
ingly sophisticated optimizations. However, their deterministic source
semantics and strict IEEE 754 compliance prevent the verification of
“fast-math” style floating-point optimizations. Developers often selec-
tively use these optimizations in mainstream compilers like GCC and
LLVM to improve the performance of computations over noisy inputs
or for heuristics by allowing the compiler to perform intuitive but IEEE
754-unsound rewrites.
We designed, formalized, implemented, and verified a compiler for Icing,
a new language which supports selectively applying fast-math style op-
timizations in a verified compiler. Icing’s semantics provides the first
formalization of fast-math in a verified compiler. We show how the Ic-
ing compiler can be connected to the existing verified CakeML compiler
and verify the end-to-end translation by a sequence of refinement proofs
from Icing to the translated CakeML. We evaluated Icing by incorporat-
ing several of GCC’s fast-math rewrites. While Icing targets CakeML’s
source language, the techniques we developed are general and could also
be incorporated in lower-level intermediate representations.

Keywords: compiler verification · floating-point arithmetic · optimiza-
tion

1 Introduction

Verified compilers formally guarantee that compiled machine code behaves ac-
cording to the specification given by the source program’s semantics. This strin-
gent requirement makes verifying “end-to-end” compilers for mainstream lan-
guages challenging, especially when proving sophisticated optimizations that
developers rely on. Recent verified compilers like CakeML [39] for ML and Com-
pCert [24] for C have been steadily verifying more of these important optimiza-
tions [40,41,42]. While the gap between verified compilers and mainstream alter-
natives like GCC and LLVM has been shrinking, so-called “fast-math” floating-
point optimizations remain absent in verified compilers.
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Fast-math optimizations allow a compiler to perform rewrites that are often
intuitive when interpreted as real-valued identities, but which may not preserve
strict IEEE 754 floating-point behavior. Developers selectively enable fast-math
optimizations when implementing heuristics, computations over noisy inputs,
or error-robust applications like neural networks—typically at the granularity
of individual source files. The IEEE 754-unsound rewrites used in fast-math
optimizations allow compilers to perform strength reductions, reorder code to
enable other optimizations, and remove some error checking [1,2]. Together these
optimization can provide significant savings and are widely-used in performance-
critical applications [12].

Unfortunately, strict IEEE 754 source semantics prevents proving fast-math
optimizations correct in verified compilers like CakeML and CompCert. Sim-
ple strength-reducing rewrites like fusing the expression x ∗ y + z into a faster
and locally-more-accurate fused multiply-add (fma) instruction cannot be in-
cluded in such verified compilers today. This is because fma avoids an interme-
diate rounding and thus may not produce exactly the same bit-for-bit result as
the unoptimized code. More sophisticated optimizations like vectorization and
loop invariant code motion depend on reordering operations to make expressions
available, but these cannot be verified since floating-point arithmetic is not asso-
ciative. Even simple reductions like rewriting x− x to 0 cannot be verified since
the result can actually be NaN (“not a number”) if x is NaN. Each of these cases
represent rewrites that developers would often, in principle, be willing to apply
manually to improve performance but which can be more conveniently handled
by the compiler. Verified compilers’ strict IEEE 754 source semantics similarly
hinders composing their guarantees with recent tools designed to improve accu-
racy of a source program [32,16,14], as these tools change program behavior to
reduce rounding error. In short, developers today are forced to choose between
verified compilers and useful tools based on floating-point rewrites.

The crux of the mismatch between verified compilers and fast-math lies in
the source semantics: verified compilers implement strict IEEE 754 semantics
while developers are intuitively programming against a looser specification of
floating-point closer to the reals. Developers currently indicate this perspective
by passing compiler flags like --ffast-math for the parts of their code written
against this looser semantics, enabling mainstream compilers to aggressively op-
timize those components. Ideally, verified compilers will eventually support such
loosened semantics by providing an “approximate real” data type and let the
developer specify error bounds under which the compiler could freely apply any
optimization that stays within bounds. A good interface to tools for analyzing
finite-precision computations [11,16] could even allow independently-established
formal accuracy guarantees to be composed with compiler correctness.

As an initial step toward this goal, we present a pragmatic and flexible
approach to supporting fast-math optimizations in verified compilers. Our ap-
proach follows the implicit design of existing mainstream compilers by provid-
ing two complementary features. First, our approach provides fine-grained con-
trol over which parts of a program the compiler may optimize under extended
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floating-point semantics. Second, our approach provides flexible extensions to
the floating-point semantics specified by a set of high-level rewrites which can
be specialized to different parts of a program. The result is a new nondeterminis-
tic source semantics which grants the compiler freedom to optimize floating-point
code within clearly defined bounds.

Under such extended semantics, we verify a set of common fast-math opti-
mizations with the simulation-based proof techniques already used in verified
compilers like CakeML and CompCert, and integrate our approach with the ex-
isting compilation pipeline of the CakeML compiler. To enable these proofs, we
provide various local lemmas that a developer can prove about their rewrites to
ensure global correctness of the verified fast-math optimizer. Several challenges
arise in the design of this decomposition including how to handle “duplicating
rewrites” like distributivity that introduce multiple copies of a subexpression
and how to connect context-dependent rewrites to other analyses (e.g., from
accuracy-verification tools) via rewrite preconditions. Our approach thus pro-
vides a rigorous formalization of the intuitive fast-math semantics developers
already use, provides an interface for dispatching proof obligations to formal nu-
merical analysis tools via rewrite preconditions, and enables bringing fast-math
optimizations to verified compilers.

In summary, the contributions of this paper are:

– We introduce an extensible, nondeterministic semantics for floating-point
computations which allows for fast-math style compiler optimizations with
flexible, yet fine-grained control in a language we call Icing.

– We implement three optimizers based on Icing: a baseline strict optimizer
which provably preserves IEEE 754 semantics, a greedy optimizer, which
applies any available optimization, and a conditional optimizer which applies
an optimization whenever an (optimization-specific) precondition is satisfied.
The code is available at https://gitlab.mpi-sws.org/AVA/Icing.

– We formalize Icing and verify our three different optimizers in HOL4.
– We connect Icing to CakeML via a translation from Icing to CakeML source

and verify its correctness via a sequence of refinement proofs.

2 The Icing Language

In this section we define the Icing language and its semantics to support fast-
math style optimizations in a verified compiler. Icing is a prototype language
whose semantics is designed to be extensible and widely applicable instead of
focusing on a particular implementation of fast-math optimizations. This allows
us to provide a stable interface as the implementation of the compiler changes,
as well as supporting different optimization choices in the semantics, depending
on the compilation target.

2.1 Syntax

Icing’s syntax is shown in Figure 1. In addition to arithmetic, let-bindings and
conditionals, Icing supports fma operators, lists ([e1 . . .]), projections (e1[n]), and

https://gitlab.mpi-sws.org/AVA/Icing
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w: 64-bit floating-point word x: String n ∈ N b ∈ {True,False}
� ∈ {−, sqrt} ◦ ∈ {+,−, ∗, /} � ∈ {<,≤,=}

e1, e2, e3 ::= w | x | [e1, . . .] | e1[n] | � e1 | e1 ◦ e2 | fma(e1, e2, e3) | opt : (e1) |
letx = e1 in e2 | if c then e1 else e2 | Map (λx.e1) e2 | Fold (λx y.e1) e2 e3

c ::= b | isNaN e1 | e1 � e2 | opt : (c)

Fig. 1: Syntax of Icing expressions

Map and Fold as primitives. Conditional guards consist of boolean constants (b),
binary comparisons (e1 � e2), and an isNaN predicate. isNaN e1 checks whether e1
is a so-called Not-a-Number (NaN) special value. Under the IEEE 754 standard,
undefined operations (e.g., square root of a negative number) produce NaN results,
and most operations propagate NaN results when passed a NaN argument. It is
thus common to add checks for NaNs at the source or compiler level.

We use the Map and Fold primitives to show that Icing can be used to ex-
press programs beyond arithmetic, while keeping the language simple. Language
features like function definitions or general loops do not affect floating-point
computations with respect to fast-math optimizations and are thus orthogonal.

The opt: scoping annotation implements one of the key features of Icing:
floating-point semantics are relaxed only for expressions under an opt: scope. In
this way, opt: provides fine-grained control both for expressions and conditional
guards.

2.2 Optimizations as Rewrites

Fast-math optimizations are typically local and syntactic, i.e., peephole rewrites.
In Icing, these optimizations are written as s → t to denote finding any subex-
pression matching pattern s and rewriting it to t, using the substitution from
matching s to instantiate pattern variables in t as usual. The find and replace
patterns of a rewrite are terms from the following pattern language which mirrors
Icing syntax:

p1, p2, p3 ::= w | b | x | � p1 | p1 ◦ p2 | p1 � p2 | fma (p1, p2, p3) | isNaN p1

Table 1 shows the set of rewrites currently supported in our development.
While this set does not include all of GCC’s fast-math optimizations, it does
cover the three primary categories:

– performance and precision improving strength reduction which fuses x∗y+z
into an fma instruction (Rewrite 1)

– reordering based on real-valued identities, here commutativity, and associa-
tivity of +, ∗, double negation and distributivity of ∗ (Rewrites 2 - 5)

– simplifying computation based on (assumed) real-valued behavior for com-
putations by removing NaN error checks (Rewrite 6)



Icing: Supporting Fast-math Style Optimizations in a Verified Compiler 5

A key feature of Icing’s design is that each rewrite can be guarded by a rewrite
precondition. We distinguish compiler rewrite preconditions as those that must
be true for the rewrite to be correct with respect to Icing semantics. Removing
a NaN check, for example, can change the runtime behavior of a floating-point
program: a previously crashing program may terminate or vice-versa. Thus a
NaN-check can only removed if the value can never be a NaN.

In contrast, an application rewrite precondition guards a rewrite that can
always be proven correct against the Icing semantics, but where a user may still
want finer-grained control. By restricting the context where Icing may fire these
rewrites, a user can establish end-to-end properities of their application, e.g.,
worst-case roundoff error. The crucial difference is that the compiler precondi-
tions must be discharged before the rewrite can be proven correct against the
Icing semantics, whereas the application precondition is an additional restriction
limiting where the rewrite is applied for a specific application.

A key benefit of this design is that rewrite preconditions can serve as an in-
terface to external tools to determine where optimizations may be conditionally
applied. This feature enables Icing to address limitations that have prevented
previous work from proving fast-math optimizations in verified compilers [5]
since “The only way to exploit these [floating-point] simplifications while pre-
serving semantics would be to apply them conditionally, based on the results
of a static analysis (such as FP interval analysis) that can exclude the prob-
lematic cases.” [5] In our setting, a static analysis tool can be used to establish
an application rewrite precondition, while compiler rewrite preconditions can be
discharged during (or potentially after) compilation via static analysis or manual
proof.

This design choice essentially decouples the floating-point static analyzer
from the general-purpose compiler. One motivation is that the compiler may per-
form hardware-specific rewrites, which source-code-based static analyzers would
generally not be aware of. Furthermore, integrating end-to-end verification of
these rewrites into a compiler would require it to always run a global static
analysis. For this reason, we propose an interface which communicates only the
necessary information.

Rewrites which duplicate matched subexpressions, e.g., distributing multi-
plication over addition, required careful design in Icing. Such rewrites can lead
to unexpected results if different copies of the duplicated expression are opti-
mized differently; this also complicates the Icing correctness proof. We show
how preconditions additionally enabled us to address this challenge in Section 4.

Icing optimizes code by folding a list of rewrites over a program e:

rewrite ([],e) = e

rewrite ((s → t)::rws, e) =

let e’ = if (matches e s) then (app (s → t) e) else e in

rewrite (rws, e’)

For rewrite s→t at the head of rws, rewrite (rws, e) checks if s matches e,
applies the rewrite if so, and recurses. Function rewrite is used in our optimizers
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Name Rewrite Precondition

1 fma introduction x * y + z → fma (x,y,z) application precond.
2 ◦ associative (x ◦ y) ◦ z → x ◦ (y ◦ z) application precond.
3 ◦ commutative x ◦ y → y ◦ x application precond.
4 double negation - (- x) → x x well-typed

5 ∗ distributive x * (y + z) → (x * y) + (x * z)
no control dependency
on optimization result

6 NaN check removal isNaN x → false x is not a NaN

Table 1: Rewrites currently supported in Icing (◦ ∈ {+, ∗})

in a bottom-up traversal of the AST. Icing users can specify which rewrites may
be applied under each distinct opt: scope in their code or use a default set
(shown in Table 1).

2.3 Semantics of Icing

Next, we explain the semantics of Icing, highlighting two distinguishing features.
First, values are represented as trees instead of simple floating-point words, thus
delaying evaluation of arithmetic expressions. Secondly, rewrites in the semantics
are applied nondeterministically, thus relaxing floating-point evaluation enough
to prove fast-math optimizations.

We define the semantics of Icing programs in Figure 2 as a big-step judgment
of the form (cfg , E, e)→ v. cfg is a configuration carrying a list of rewrites (s→
t) representing allowed optimizations, and a flag tracking whether optimizations
are allowed in the current program fragment under an opt: scope (OptOk). E
is the (runtime) execution environment mapping free variables to values and e
an Icing expression. The value v is the result of evaluating e under E using
optimizations from cfg .

The first key idea of Icing’s semantics is that expressions are not evaluated to
(64-bit) floating-point words immediately; the semantics rather evaluates them
into value trees representing their computation result. As an example, if e1 evalu-
ates to value tree v1 and e2 to v2, the semantics returns the value tree represented
as v1 + v2 instead of the result of the floating-point addition of (flattened) v1
and v2. The syntax of value trees is:

c ::= b | isNaN v1 | v1 � v2 | opt: c
v1, v2, v3 ::= w | � v1 | v1 ◦ v2 | fma(v1, v2, v3) | opt: v1

Constants are again defined as floating-point words and form the leaves of value
trees (variables obtain a constant value from the execution environment E). On
top of constants, value trees can represent the result of evaluating any floating-
point operation Icing supports.

The second key idea of our semantics is that it nondeterministically ap-
plies rewrites from the configuration cfg while evaluating expression e instead
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(cfg , E, c)→ c
Const

(cfg , E, b)→ b
Bool

(cfg , E, e)→ v
(� v, cfg) rewritesTo r

(cfg , E, � e)→ r
Unary

E (x) = r

(cfg , E, x)→ r
Var

(cfg , E, e)→ vl
n < |vl|
vl[n] = r

(cfg , E, e[n])→ r
Ith

(cfg , E, e1)→ v1

(cfg , E, e2)→ v2

(cfg , E, e3)→ v3

(fma v1 v2 v3, cfg) rewritesTo r

(cfg , E, fma e1 e2 e3)→ r
fma

(cfg , E, e1)→ v1

(cfg , E[x 7→ v1], e2)→ v2

(cfg , E, letx = e1 in e2)→ v2
Let-bind

(cfg with OptOk := true, E, e)→ v

(cfg , E, Opt : e)→ v
Scope

(cfg , E, e1)→ v1

(cfg , E, e2)→ v2

(v1 ◦ v2, cfg) rewritesTo r

(cfg , E, e1 ◦ e2)→ r
Binary

(cfg , E, c)→ cv
cTree2IEEE cv = b

(cfg , E, eb)→ r

(cfg , E, if c then eT else eF)→ r
If

(cfg , E, Map (λx.e) [])→ []
Map []

(cfg , E, s)→ v

(cfg , E, Fold (λx y.e) s [])→ v
Fold []

(cfg , E, e1)→ v1

(cfg , E[x 7→ v1], e)→ vres

(cfg , E, Map (λx.e) el)→ vl

(cfg , E, Map (λx.e) (e1 :: el))→ vres :: vl
Map cons

(cfg , E, e1)→ v1

(cfg , E, Fold (λx y.e) s el)→ vres

(cfg , E[x 7→ v1, y 7→ vres], e)→ vfinal

(cfg , E, Fold (λx y.e) s (e1 :: el))→ vfinal
Fold cons

(cfg , E, e)→ v
(isNaN v, cfg) rewritesTo r

(cfg , E, isNaN e)→ r
isNaN

(cfg , E, e1)→ v1

(cfg , E, e2)→ v2

(v1 � v2, cfg) rewritesTo r

(cfg , E, e1 � e2)→ r
Compare

Fig. 2: Nondeterminstic Icing semantics
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let v1 = Map (λ x. opt:(x + 3.0)) vi in

let vsum = Fold (λ x y. opt:(x * x + y)) 0.0 v1 in sqrt vsum

Fig. 3: A simple Icing program

of just returning its value tree. In the semantics, we model the nondeterministic
choice of an optimization result for a particular value tree v with the relation
rewritesTo, where (cfg , v) rewritesTo r if either the configuration cfg allows for
optimizations to be applied, and value tree v can be rewritten into value tree
r using rewrites from the configuration cfg ; or the configuration does not allow
for rewrites to be applied, and v = r. Rewriting on value trees reuses several
definitions from Section 2.2. We add the nondeterminism on top of the existing
functions by making the relation rewritesTo pick a subset of the rewrites from
the configuration cfg which are applied to value tree v.

Icing’s semantics allows optimizations to be applied for arithmetic and com-
parison operations. The rules Unary, Binary, fma, isNaN, and Compare first
evaluate argument expressions into value trees. The final result is then nonde-
terministically chosen from the rewritesTo relation for the obtained value tree
and the current configuration. Evaluation of Map, Fold, and let-bindings follows
standard textbook evaluation semantics and does not apply optimizations.

Rule Scope models the fine-grained control over where optimizations are
applied in the semantics. We store in the current configuration cfg that opti-
mizations are allowed in the (sub-)expression e (cfg with OptOk := true).

Evaluation of a conditional (if c then eT else eF ) first evaluates the condi-
tional guard c to a value tree cv. Based on value tree cv the semantics picks a
branch to continue evaluation in. This eager evaluation for conditionals (in con-
trast to delaying by leaving them in a value tree) is crucial to enable the later
simulation proof to connect Icing to CakeML which also eagerly evaluates condi-
tionals. As the value tree cv represents a delayed evaluation of a boolean value,
we have to turn it into a boolean constant when selecting the branch to con-
tinue evaluation in. This is done using the functions cTree2IEEE and tree2IEEE.
cTree2IEEE (v) computes the boolean value, and tree2IEEE (v) computes the
floating-point word represented by the value tree v by applying IEEE 754 arith-
metic operations and structural recursion.

Example We illustrate Icing semantics and how optimizations are applied both in
syntax and semantics with the example in Figure 3. The example first translates
the input list by 3.0 using a Map, and then computes the norm of the translated
list with Fold and sqrt.

We want to apply x+ y → y + x (commutativity of +) and fma-introduction
(x ∗ y + z → fma(x, y, z)) to our example program. Depending on their order the
function rewrite will produce different results.

If we first apply commutativity of +, and then fma introduction, all + op-
erations in our example will be commuted, but no fma introduced as the fma
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introduction syntactically relies on the expression having the structure x ∗ y + z
where x, y, z can be arbitrary. In contrast, if we use the opposite order of rewrites,
the second line will be replaced by let vsum = Fold (λx y.fma(x,x,y)) 0.0 v1

and commutativity is only applied in the first line.
To illustrate how the semantics applies optimizations, we run the program

on the 2D unit vector (vi = [1.0,1.0]) in a configuration that contains both
rewrites. Consequently the Map application can produce [1.0 + 3.0, 1.0 + 3.0],
[3.0 + 1.0, 1.0 + 3.0], . . . Where the terms 1.0 + 3.0, 3.0 + 1.0 correspond
to the value trees representing the addition of 1.0 and 3.0.

If we apply the Fold operation to this list, there are even more possible
optimization results:

[(1.0 + 3.0) * (1.0 + 3.0) + (1.0 + 3.0) * (1.0 + 3.0)],

[(3.0 + 1.0) * (3.0 + 1.0) + (3.0 + 1.0) * (3.0 + 1.0)],

[fma ((3.0 + 1.0), (3.0 + 1.0), (3.0 + 1.0) * (3.0 + 1.0))],

[fma ((1.0 + 3.0), (1.0 + 3.0), (3.0 + 1.0) * (1.0 + 3.0))], . . .

The first result is the result of evaluating the initial program without any
rewrites, the second result corresponds to syntactically optimizing with commu-
tativity of + and then fma introduction, and the third corresponds to using the
opposite order syntactically. The last two results can only be results of seman-
tic optimizations as commutativity and fma introduction are applied to some
intermediate results of Map, but not all. There is no syntactic application of
commutativity and fma-introduction leading to such results.

3 Modelling Existing Compilers in Icing

Having defined the syntax and semantics of Icing, we next implement and prove
correct functions which model the behavior of previous verified compilers, like
CompCert or CakeML, and the behavior of unverified compilers, like GCC or
Clang, respectively. For the former, we first define a translator of Icing expres-
sions which preserves the IEEE 754 strict meaning of its input and does not
allow for any further optimizations. Then we give a greedy optimizer that un-
conditionally optimizes expressions, as observed by GCC and Clang.

3.1 An IEEE 754 Preserving Translator

The Icing semantics nondeterministically applies optimizations if they are added
to the configuration. However, when compiling safety-critical code or after ap-
plying some syntactic optimizations, one might want to preserve the strict IEEE
754 meaning of an expression.

To make sure that the behavior of an expression cannot be further changed
and thus the expression exhibits strict IEEE 754 compliant behavior, we have im-
plemented the function compileIEEE754, which essentially disallows optimizations
by replacing all optimizable expressions opt: e’ with non-optimizable expres-
sions e’. Correctness of compileIEEE754 shows that a) no optimizations can be
applied after the function has been applied, and b) evaluation is deterministic.
We have proven these properties as separate theorems.
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3.2 A Greedy Optimizer

Next, we implement and prove correct an optimizer that mimics the (observed)
behavior of GCC and Clang as closely as possible. The optimizer applies fma

introduction, associativity and commutativity greedily. All these rewrites only
have an application rewrite precondition which we instantiate to True to apply
the rewrites unconstrained.

To give an intuition for greedy optimization, recall the example from Fig-
ure 3. Greedy optimization does not consider whether applying an optimization
is beneficial or not. If the optimization is allowed to be applied and it matches
some subexpression of an optimizable expression, it is applied. Thus the order
of optimizations matters. Applying the greedy optimizer with the rewrites
[associativity,fma-introduction, commutativity] to the example, we get:

let v1 = Map (λ x. opt:(3.0 + x)) vi in

let vsum = Fold (λ x y. opt:(y + x * x)) 0.0 v1 in sqrt vsum

Only commutativity has been applied as associativity does not match and the
possibility for an fma-introduction is ruled out by commutativity. If we reverse
the list of optimizations we obtain:

let v1 = Map (λ x. opt:(3.0 + x)) vi in

let vsum = Fold (λ x y. opt:(fma (x,x,y))) 0.0 v1 in sqrt vsum

which we consider to be a more efficient version of the program from Figure 3.
Greedy optimization is implemented in the function optimizeGreedy (rws, e)

which applies the rewrites in rws in a bottom-up traversal to expression e. In
combination with the greedy optimizer our fine-grained control (using opt anno-
tations) allows the end-user to control where optimizations can be applied.

We have shown correctness of optimizeGreedy with respect to Icing semantics,
i.e., we have shown that optimizing greedily gives the same result as applying
the greedy rewrites in the semantics:4

Theorem 1. optimizeGreedy is correct
Let E be an environment, v a value tree and cfg a configuration.
If (cfg , E,optimizeGreedy ([associativity,commutativity,fma-intro], e))→ v
then (cfg with[associativity, commutativity,fma-intro], E,e)→ v.

Proving Theorem 1 without any additional lemmas is tedious as it requires
showing correctness of a single optimization in the presence of other optimiza-
tions and dealing with the bottom-up traversal applying the optimization at
the same time. Thus we reduce the proof of Theorem 1 to proving each rewrite
separately and then chaining together these correctness proofs. Lemma 1 shows
that applications of the function rewrite can be chained together in the seman-
tics. This also means that adding, removing, or reordering optimizations simply
requires changing the list of rewrites, thus making Icing easy to extend.

4 As in many verified compilers, Icings proofs closely follow the structure of optimiza-
tions. Achieving this required careful design and many iterations; we consider the
simplicity of Icings proofs to be a strength of this work.
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Lemma 1. rewrite is compositional
Let e be an expression, v a value tree, s→ t a rewrite, and rws a set of rewrites.
If the rewrite s→ t can be correctly simulated in the semantics, and list rws can
be correctly simulated in the semantics, then the list of rewrites (s → t) :: rws
can be correctly simulated in the semantics.

4 A Conditional Optimizer

We have implemented an IEEE 754 optimizer which has the same behavior as
CompCert and CakeML, and a greedy optimizer with the (observed) behavior
of GCC and Clang. The fine-grained control of where optimizations are applied
is essential for the usability of the greedy optimizer. However, in this section
we explain that the control provided by the opt annotation is often not enough.
We show how preconditions can be used to provide additional constraints on
where rewrites can be applied, and sketch how preconditions serve as an interface
between the compiler and external tools, which can and should discharge them.

We observe that in many cases, whether an optimization is acceptable or
not can be captured with a precondition on the optimization itself, and not on
every arithmetic operation separately. One example for such an optimization is
removal of NaN checks as a check for a NaN should only be removed if the check
never succeeds.

We argue that both application and compiler rewrite preconditions should
be discharged by external tools. Many interesting preconditions for a rewrite
depend on a global analysis. Running a global analysis as part of a compiler
is infeasible, as maintaining separate analyses for each rewrite is not likely to
scale. We thus propose to expose an interface to external tools in the form of
preconditions.

We implement this idea in the conditional optimizer optimizeCond that sup-
ports three different applications of fast-math optimizations: applying optimiza-
tions rws unconstrained (uncond rws), applying optimizations if precondition P

is true (cond P rws), and applying optimizations under the assumptions genera-
tion by function A which should be discharged externally (assume A rws). When
applying cond, optimizeCond checks whether precondition P is true before op-
timizing, whereas for assume the propositions returned by A are assumed, and
should then be discharged separately by a static analysis or a manual proof.

Correctness of optimizeCond relates syntactic optimizations to applying op-
timizations in the semantics. Similar to optimizeGreedy, we designed the proof
modularly such that it suffices to prove correct each rewrite individually.

Our optimizer optimizeCond takes as arguments first a list of rewrite ap-
plications using uncond, cond, and assume then an expression e. If the list is
empty, we have optimizeCond ([], e) = e. Otherwise the rewrite is applied in
a bottom-up traversal to e and optimization continues recursively. For uncond,
the rewrites are applied if they match; for cond P rws the precondition P is
checked for the expression being optimized and the rewrites rws are applied if
P is true; for assume A rws, the function A is evaluated on the expression being
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optimized. If execution of A fails, no optimization is applied. Otherwise, A re-
turns a list of assumptions which are logged by the compiler and the rewrites
are applied.

Using the interface provided by preconditions, one can prove external theo-
rems showing additional properties of a compiler run using application rewrite
preconditions, and external theorems showing how to discharge compiler rewrite
preconditions with static analysis tools or a manual proof. We will call such
external theorems meta theorems.

In the following we discuss two possible meta theorems, highlighting key
steps required for implementing (and proving) them. A complete implementation
consists of two connections: (1) from the compiler to rewrite preconditions and
(2) from rewrite preconditions to external tools. We implement (1) independently
of any particular tool. A complete implementation of (2) is out of scope of this
paper; meta theorems generally depend on global analyses which are orthogonal
to designing Icing, but several external tools already provide functionality that is
a close match to our interface and we sketch possible connections below. We note
that for these meta theorems, optimizeCond should track the context in which
an assumption is made and use the context to express assumptions as local
program properties. Our current optimizeCond implementation does not collect
this contextual information yet, as this information at least partially depends
on the particular meta theorems desired.

4.1 A Logging Compiler for NaN Special Value Checks

We show how a meta theorem can be used to discharge a compiler rewrite pre-
condition on the example of removing a NaN check. Removing a NaN check, in
general, can be unsound if the check could have succeeded. Inferring statically
whether a value can be a NaN special value or not requires either a global static
analysis, or a manual proof on all possible executions.

Preconditions are our interface to external tools. For NaN check removal, we
implement a function removeNaNcheck e that returns the assumption that no NaN

special value can be the result of evaluating the argument expression e. Function
removeNaNCheck could then be used as part of an assume rule for optimizeCond.
We prove a strengthened correctness theorem for NaN check removal, showing
that if the assumption returned by removeNaNcheck is discharged externally (i.e.
by the end-user or via static analysis), then we can simulate applying NaN check
removal syntactically in Icing semantics without additional sideconditions.

The assumption from removeNaNcheck is additionally returned as the result of
optimizeCond since it is faithfully assumed when optimizing. Such assumptions
can be discharged by static analyzers like Verasco [22], or Gappa [17].

4.2 Proving Roundoff Error Improvement

Rewrites like associativity and distributivity change the results of floating-point
programs. One way of capturing this behavior for a single expression is to com-
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pute the roundoff error, i.e. the difference between an idealized real-valued and
a floating-point execution of the expression.

To compute an upper bound on the roundoff error, various formally verified
tools have been implemented [30,3,37,17]. A possible meta theorem is thus to
show that applying a particular list of optimizations does not increase the round-
off error of the optimized expression but only decreases or preserves it. The meta
theorem for this example would show that a) all the applied syntactic rewrites
can be simulated in the semantics and b) the worst-case roundoff error of the
optimized expression is smaller or equal to the error of the input expression.
Our development already proves a) and we sketch the steps necessary to show
b) below.

We can leverage these roundoff error analysis tools as application precon-
ditions in a cond rule, checking whether a rewrite should be applied or not in
optimizeCond. For a particular expression e, an application precondition
(check (s→t, e)) would return true if applying rewrite s→t does not increase
the roundoff error of e.

Theorem 2. check decreases roundoff error
(cfg, E, optimizeCond (Cond (λe. check (s→t, e))) e) → v =⇒
(cfg with opts := cfg.opts ∪ {s → t}, E, e) → v ∧
error e ≤ error (optimizeCond (Cond (λe. check (s→t, e))) e)

Implementing check (s→t, e) requires computing a roundoff error for ex-
pression e and one for e rewritten with s→t and returning True if and only if
the roundoff error has not increased by applying the rewrite. Proving the the-
orem would require giving a real-valued semantics for Icing, connecting Icing’s
semantics to the semantics of the roundoff error analysis tool, and a global range
analysis on the Icing programs, which can be provided by Verasco or Gappa.

4.3 Supporting Distributivity in optimizeCond

The rewrites considered up to this point do not duplicate any subexpressions in
the optimized output. In this section, we consider rewrites which do introduce ad-
ditional occurrences of subexpressions, which we dub duplicative rewrites. Com-
mon duplicative rewrites are distributivity of ∗ with + (x∗(y+x)↔ x∗y+x∗z)
and rewriting a single multiplication into multiple additions (x ∗ n ↔

∑n
i=1 x).

Here we consider distributivity as an example. A compiler might want to use
this optimization to apply further strength reductions or fma introduction.

The main issue with duplicative rewrites is that they add new occurrences of
a matched subexpression. Applying (x ∗ (y + z)→ x ∗ y + x ∗ z) to e1 * (2 + x)

returns e1 * 2 + e1 * x. The values for the two occurrences of e1 may differ
because of further optimizations applied to only one of it’s occurrences.

Any correctness proof for such a duplicative rewrite must match up the two
(potentially different) executions of e1 in the optimized expression
(e1 * 2 + e1 * x) with the execution of e1 in the initial expression (e1 * (2 + x)).
This can only be achieved by finding a common intermediate optimization (resp.
evaluation) result shared by both subexpressions of e1 * 2 + e1 * x.
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In general, existence of such an intermediate result can only be proven
for expressions that do not depend on “eager” evaluation, i.e. which consists
of let-bindings and arithmetic. We illustrate the problem using a conditional
(if c then e1 else e2). In Icing semantics, the guard c is first evaluated to a
value tree cv. Next, the semantics evaluates cv to a boolean value b using function
cTree2IEEE. Computing b from cv loses the structural information of value tree
cv by computing the results of previously delayed arithmetic operations. This
loss of information means that rewrites that previously matched the structure
of cv may no longer apply to b.

This is not a bug in the Icing semantics. On the contrary, our semantics
makes this issue explicit, while in other compilers it can lead to unexpected be-
havior (e.g., in GCC’s support for distributivity under fast-math). CakeML, for
example, also eagerly evaluates conditionals and similarly loses structural infor-
mation about optimizations that otherwise may have been applied. Having lazy
conditionals in general would only “postpone” the issue until eager evaluation
of the conditional expression for a loop is necessary.

An intuitive compiler precondition that enables proving duplicative rewrites
is to forbid any control dependencies on the expression being optimized. How-
ever, this approach may be unsatisfactory as it disallows branching on the results
of optimized expressions and requires a verified dependency analysis that must
be rerun or incrementally updated after every rewrite, and thus could become
a bottleneck for fast-math optimizers. Instead, in Icing we restrict duplicative
rewrites to only fire when pattern variables are matched against program vari-
ables, e.g., pattern variables a, b, c only match against program variables x, y, z.
This restriction to only matching let-bound variables is more scalable, as it can
easily be checked syntactically, and allows us to loosen the restriction on control-
flow dependence by simply let-binding subexpressions as needed.

5 Connecting to CakeML

We have shown how to apply optimizations in Icing and how to use it to preserve
IEEE 754 semantics. Next, we describe how we connected Icing to an existing
verified compiler by implementing a translation from Icing source to CakeML
source and showing an equivalence theorem.5 The translation function toCML

maps Icing syntax to CakeML syntax. We highlight the most interesting cases.
The translations of Ith, Map, Fold relate an Icing execution to a predefined func-
tion from the CakeML standard library. We show separate theorems relating
executions of list operations in Icing to CakeML closures of library functions.
The predicate isNaN e is implemented as toCML e <> toCML e. The predicate is
true in Icing semantics, if and only if e is a NaN special value. Recall that floating-
point NaN values are incomparable (even to themselves) and thus we implement
isNaN with an equality check.

5 We also extended the CakeML source semantics with an fma operation, as CakeML’s
compilation currently does not support mapping fma’s to hardware instructions.
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non-deterministic Icing with rewriting

rewritten (deterministic) Icing

CakeML source

given syntactic rewrites on expression e,
if v is the result of evaluating  e 

then v is contained in the non-deterministic 
semantics 

equivalence of exact
floating-point behaviour

Fig. 4: Simulation diagram for Icing and the designed optimizers

To show that our translation function toCML correctly translates Icing pro-
grams into CakeML source, we proved a simulation between the two semantics,
illustrated in Figure 4. The top part consists of the correctness theorems we have
shown for the optimizers, relating syntactic optimization to semantic rewriting.
In the bottom part we relate a deterministic Icing execution which does not ap-
ply optimizations to CakeML source semantics and prove an equivalence. For the
backward simulation between CakeML and Icing we require the Icing program
to be well-typed which is independently checked.

6 Related Work

Verified Compilation of Floating-Point Programs CompCert [25] uses a construc-
tive formalization of IEEE 754 arithmetic [6] based on Flocq [7] which allows
for verified constant propagation and strength reduction optimizations for divi-
sions by powers of 2 and replacing x × 2 by x + x. The situation is similar for
CakeML [39] whose floating-point semantics is based on HOL’s [19,20]. With
Icing, we propose a semantics which allows important floating-point rewrites in
a verified compiler by allowing users to specify a larger set of possible behaviors
for their source programs. The precondition mechanism serves as an interface
to external tools. While Icing is implemented in HOL, our techniques are not
specific to higher-order logic or the details of CakeML and we believe that an
analog of our “verified fast-math” approach could easily be ported to CompCert.

The Alive framework [27] has been extended to verify floating-point peep-
hole optimizations [29,31]. While these tools relax some exceptional (NaN) cases,
most optimizations still need to preserve “bit-for-bit” IEEE 754 behavior, which
precludes valuable rewrites like the fma introductions Icing supports.

Optimization of Floating-Point Programs ‘Mixed-precision tuning’ can increase
performance by decreasing precision at the expense of accuracy, for instance from
double to single floating-point precision. Current tools [35,11,16,13], ensure that
a user-provided error bound is satisfied either through dynamic or static analysis.
In this work, we consider only uniform 64-bit floating-point precision, but Icing’s
optimizations are equally applicable to other precisions. Optimizations such as
mixed-precision tuning are, however, out of scope of a compiler setting, as they
require error bound annotations for kernel functions.
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Spiral [33] uses real-valued linear algebra identities for rewriting at the al-
gorithmic level to choose a layout which provides the best performance for a
particular platform, but due to operation reordering is not IEEE 754 seman-
tics preserving. Herbie [32] optimizes for accuracy, and not for performance by
applying rewrites which are mostly based on real-valued identities. The opti-
mizations performed by Spiral and Herbie go beyond what traditional compilers
perform, but they fit our view that it is sometimes beneficial to relax the strict
IEEE 754 specification, and could be considered in an extended implementation
of Icing. On the other hand, STOKE’s floating-point superoptimizer [36] for x86
binaries does not preserve real-valued semantics, and only provides approximate
correctness using dynamic analysis.

Analysis and Verification of Floating-Point Programs Static analysis for bound-
ing roundoff errors of finite-precision computations w.r.t. to a real-valued seman-
tics [38,15,28,30,18,17] (some with formal certificates in Coq or HOL), are cur-
rently limited to short, mostly straight-line functions and require fine-grained do-
main annotations at the function level. Whole program accuracy can be formally
verified w.r.t. to a real-valued implementation with substantial user interaction
and expertise [34]. Verification of elementary function implementations has also
recently been automated, but requires substantial compute resources [23].

On the other hand, static analyses aiming to verify the absence of runtime
exceptions like division by zero [4,10,21,22] scale to realistic programs. We believe
that such tools can be used to satisfy preconditions and thus Icing would serve as
an interface between the compiler and such specialized verification techniques.

The KLEE symbolic execution engine [9] has support for floating-point pro-
grams [26] through an interface to Z3’s floating-point theory [8]. This theory is
also based on IEEE 754 and will thus not be able to verify the kind of optimiza-
tions that Icing supports.

7 Conclusion

We have proposed a novel semantics for IEEE 754-unsound floating-point com-
piler optimizations which allows them to be applied in a verified compiler set-
ting and which captures the intuitive semantics developers often use today when
reasoning about their floating-point code. Our semantics is nondeterministic in
order to provide the compiler the freedom to apply optimizations where they
are useful for a particular application and platform—but within clearly defined
bounds. The semantics is flexible from the developer’s perspective, as it pro-
vides fine-grained control over which optimizations are available and where in
a program they can be applied. We have presented a formalization in HOL4,
implemented three prototype optimizers, and connected them to the CakeML
verified compiler frontend. For our most general optimizer, we have explained
how it can be used to obtain meta-theorems for its results by exposing a well-
defined interface in the form of preconditions. We believe that our semantics can
be integrated fully with different verified compilers in the future, and bridge the
gap between compiler optimizations and floating-point verification techniques.
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