
Functional Big-step Semantics

Scott Owens1, Magnus O. Myreen2, Ramana Kumar3, and Yong Kiam Tan4

1 School of Computing, University of Kent, UK
2 CSE Department, Chalmers University of Technology, Sweden

3 NICTA, Australia
4 IHPC, A*STAR, Singapore

Abstract. When doing an interactive proof about a piece of software,
it is important that the underlying programming language’s semantics
does not make the proof unnecessarily difficult or unwieldy. Both small-
step and big-step semantics are commonly used, and the latter is typi-
cally given by an inductively defined relation. In this paper, we consider
an alternative: using a recursive function akin to an interpreter for the
language. The advantages include a better induction theorem, less du-
plication, accessibility to ordinary functional programmers, and the ease
of doing symbolic simulation in proofs via rewriting. We believe that
this style of semantics is well suited for compiler verification, including
proofs of divergence preservation. We do not claim the invention of this
style of semantics: our contribution here is to clarify its value, and to
explain how it supports several language features that might appear to
require a relational or small-step approach. We illustrate the technique
on a simple imperative language with C-like for-loops and a break state-
ment, and compare it to a variety of other approaches. We also provide
ML and lambda-calculus based examples to illustrate its generality.

1 Introduction

In the setting of mechanised proof about programming languages, it is often
unclear what kind of operational semantics to use for formalising the language:
common big-step and small-step approaches each have their own strengths and
weaknesses. The choice depends on the size, complexity, and nature of the pro-
gramming language, as well as what is being proved about it. As a rule-of-thumb,
the more complex the language’s features, or the more semantically intricate the
desired theorem, the more likely it is that small-step semantics will be needed.
This is because small-step semantics enable powerful proof techniques, including
syntactic preservation/progress and step-indexed logical relations, by allowing
close observation not only of the result of a program, but also how it got there.
In contrast, big-step’s advantages arise from following the syntactic structure of
the programming language. This means that they can mesh nicely with similarly
structured compilers, type systems, etc. that one is trying to verify, and reduce
the overhead of mechanised proof.

For large projects, a hybrid approach can be adopted. The CompCert [16,17]
verified C compiler uses big-step for some parts of its semantics and small-step

for others. In the initial version of our own CakeML project [15], we had two
different semantics for the source language: big-step for the compiler verification
and small-step for the type soundness proof, with an additional proof connecting
the two semantics.

In contrast, this paper advocates functional big-step semantics, which can
support many of the proofs and languages that typically rely on a small-step
approach, but with a structure that follows the language’s syntax. A functional
big-step semantics is essentially an interpreter written in a purely functional
style and equipped with a clock to ensure that the function is total, even when
run on diverging programs. Hence the interpreter can be used in a higher-order
logic of total functions – the kind supported by Coq, HOL4, and Isabelle/HOL –
as a formal definition of the semantics. In this way, it harkens back to Reynolds’
idea of definitional interpreters [23] to give a readable account of a semantics.
Additionally, by initialising the clock to a very large number, the same functional
big-step semantics used for proof can also be executed on test programs for
exploration and validation.

The idea of using a clock in a semantics is not new;1 our contribution here
is to analyse its advantages, especially in the context of interactive proofs, and
to show how it can be used to support the kinds of proofs that push researchers
to small-step semantics. We argue that:

– Functional semantics are easier to read, have a familiar feel for functional
programmers, and avoid much of the duplication that occurs in big-step
semantics defined with inductive relations, especially for languages with ex-
ceptions and other non-local control-flow (§2).

– Functional semantics can be used more easily in mechanised proofs based on
rewriting, since functional semantics are stated in terms of equations (§3.1).

– Functional semantics also produce better induction theorems. Induction the-
orems for relational big-step semantics frequently force unnecessary case
splits in proofs (§3.2).

– The clock used to define a functional semantics is convenient both for proofs
that a compiler preserves the diverging behaviour of programs (§3.3, §3.4),
and for defining (and using) step-indexed logical relations (§6).

– Functional semantics can use an oracle in the state to support languages
with I/O and non-determinism (§4).

There are a variety of advanced techniques for defining big-step semantics
that solve some of these problems. For example, one can use co-induction to
precisely define diverging computations [18,20], or the pretty-big-step approach
to reduce duplication in the definition [10]. Notably, these techniques still define
the semantics using inductive (and co-inductive) relations rather than recursive

1 For example, CakeML initially used a clocked, but relational, semantics for its inter-
mediate languages, and clocked recursive evaluation functions are common in Boyer-
Moore-style provers such as ACL2, where inductive relations are unavailable [8,30].
Leroy and Grall [18] use a clock to define a denotational semantics in Coq. Siek has
also advocated for clocks for proving type soundness [25,26]

functions, and we are not aware of any relational approach with all of the advan-
tages listed above. However, functional semantics, as advocated in this paper,
are not without their limitations. One is that the definition of a functional se-
mantics requires introduction of a clock which must decrease on certain recursive
calls (§2.3). Another is that languages with non-determinism require an oracle
state component to factor out the non-determinism (§4). Lastly, we have not
investigated languages with unstructured non-determinism, e.g. concurrency.

Our ideas about functional big-step semantics were developed in the context
of the CakeML project (https://cakeml.org, [15]) where the latest version
has functional big-step semantics for all of its intermediate languages (see §8);
however, the bulk of this paper concentrates on a series of smaller examples,
starting with a C-like language with for and break statements (§2). We use it to
explain in detail how the functional approach supports the verification of a simple
compiler (§3). Then, we present a series of different languages and theorems to
illustrate the breadth of our approach (§4, §5, and §6). Lastly, we show how to
prove the equivalence of a functional big-step and small-step semantics (§7).

All of the semantics and theorems in this paper have been formalised and
proved in the HOL4 proof assistant (http://hol-theorem-prover.org). The
formalisation is available in the HOL4 examples directory (https://github.
com/HOL-Theorem-Prover/HOL/tree/master/examples/fun-op-sem); we en-
courage interested readers to consult these sources for the definitions and lemmas
that we lack the space to present here.

2 Example semantics

In this section, we motivate functional big-step semantics by defining an opera-
tional semantics for a toy language in both relational and functional styles. We
call our toy language FOR, as it includes for loops and break statements that
are familiar from C. We first define the big-step semantics of FOR, informally,
as an interpreter in Standard ML (SML); next we explain why the semantics
of FOR is difficult to capture in a conventional big-step relation, but, using a
functional big-step semantics, can be defined neatly as a function in logic.

2.1 An interpreter in SML

The FOR language has expressions e and statements t. Like C, we allow expres-
sion evaluation to have side effects (namely, assignment).

datatype t = Dec of string * t datatype e = Var of string

| Exp of e | Num of int

| Break | Add of e * e

| Seq of t * t | Assign of string * e

| If of e * t * t datatype r = Rval of int

| For of e * e * t | Rbreak | Rfail

We sketch the semantics for this language by defining functions that evaluate ex-
pressions and statements, run_e and run_t respectively. Each evaluation returns

https://cakeml.org
http://hol-theorem-prover.org
https://github.com/HOL-Theorem-Prover/HOL/tree/master/examples/fun-op-sem
https://github.com/HOL-Theorem-Prover/HOL/tree/master/examples/fun-op-sem

an integer wrapped in Rval, signals a break Rbreak, or fails Rfail. Expression
evaluation fails on an attempt to read the value of an uninitialised variable.

fun lookup y [] = NONE

| lookup y ((x,v)::xs) = if y = x then SOME v else lookup y xs

fun run_e s (Var x) =

(case lookup x s of

NONE => (Rfail,s)

| SOME v => (Rval v,s))

| run_e s (Num i) = (Rval i,s)

| run_e s (Add (e1, e2)) =

(case run_e s e1 of

(Rval n1, s1) =>

(case run_e s1 e2 of

(Rval n2, s2) => (Rval (n1+n2), s2)

| r => r)

| r => r)

| run_e s (Assign (x, e)) =

(case run_e s e of

(Rval n1, s1) => (Rval n1, (x,n1)::s1)

| r => r)

Below, evaluation of a Break statement returns Rbreak, which is propagated to
the enclosing For loop. A For loop returns a normal Rval result if the body of
the loop returns Rbreak.

fun run_t s (Exp e) = run_e s e

| run_t s (Dec (x, t)) = run_t ((x,0)::s) t

| run_t s Break = (Rbreak, s)

| run_t s (Seq (t1, t2)) =

(case run_t s t1 of

(Rval _, s1) => run_t s1 t2

| r => r)

| run_t s (If (e, t1, t2)) =

(case run_e s e of

(Rval n1, s1) => run_t s1 (if n1 = 0 then t2 else t1)

| r => r)

| run_t s (For (e1, e2, t)) =

(case run_e s e1 of

(Rval n1, s1) =>

if n1 = 0 then (Rval 0, s1) else

(case run_t s1 t of

(Rval _, s2) =>

(case run_e s2 e2 of

(Rval _, s3) => run_t s3 (For (e1, e2, t))

| r => r)

| (Rbreak, s2) => (Rval 0, s2)

| r => r)

| r => r)

These SML functions make use of catch-all patterns in case-expressions in order
to conveniently propagate non-Rval results. We use the same approach in our
functional semantics (§2.3) to keep them concise. The case expressions above are
idiomatic for SML, but in a language with syntactic support for monadic com-
putations, such as Haskell with do-notation, one would package the propagation
of exceptional results inside a monadic bind operator.

2.2 Relational big-step semantics

The definition above is a good way to describe the semantics of FOR to a pro-
grammer familiar with SML. It is, however, not directly usable as an operational
semantics for interactive proofs. Next, we outline how a big-step semantics can
be defined for the FOR language using conventional inductively defined relations.

Relational big-step semantics are built up from evaluation rules for an evalu-
ation relation, typically written ⇓. Each rule states how execution of a program
expression evaluates to a result. The evaluation relation for the FOR language
takes as input a state and a statement; it then relates these inputs to the result
pair (r and new state) just as the interpreter above does.

We give a flavour of the evaluation rules next. The simplest rule in the FOR
language is evaluation of Break: evaluation always produces Rbreak and the
state s is returned unchanged. We call this rule (B).

(B)
(Break,s) ⇓t (Rbreak,s)

The semantics of Seq is defined by two evaluation rules. We need two rules
because evaluation of t2 only happens if evaluation of t1 leads to Rval. The first
rule for Seq (S1) states: if t1 evaluates according to (t1,s) ⇓t (Rval n1,s1) and
t2 evaluates as (t2,s1) ⇓t r , then (Seq t1 t2,s) ⇓t r , i.e. Seq t1 t2 evaluates
state s to result r . The second rule (S2) states that a non-Rval result in t1 is
the result for evaluation of Seq t1 t2.

(S1)

(t1,s) ⇓t (Rval n1,s1)
(t2,s1) ⇓t r

(Seq t1 t2,s) ⇓t r
(S2)

(t1,s) ⇓t (r,s1)
¬is_Rval r

(Seq t1 t2,s) ⇓t (r,s1)

Defining these evaluation rules is straightforward, if the language is simple
enough. We include the For statement in our example language in order to show
how this conventional approach to big-step evaluation rules becomes awkward
and repetitive. The For statement’s semantics is defined by six rules. The first
rule captures the case when the loop is not executed, i.e. when the guard ex-
pression evaluates to zero. The second rule states that errors in the evaluation
of the guard are propagated.

(F1)
(e1,s) ⇓e (Rval 0,s1)

(For e1 e2 t,s) ⇓t (Rval 0,s1)
(F2)

(e1,s) ⇓e (r,s1)
¬is_Rval r

(For e1 e2 t,s) ⇓t (r,s1)

Execution of the body of the For statement is described by the following four
rules. The first of the following rules (F3) specifies the behaviour of an evaluation
where the guard e1, the body t , and the increment expression e2 each return some
Rval. The second rule (F4) defines the semantics for the case where evaluation of
the body t signals Rbreak. The third rule (F5) states that errors in the increment
expression e2 propagate. Similarly, the fourth rule (F6) states that errors that
occur in evaluation of the body propagate.

(F3)

(e1,s) ⇓e (Rval n1, s1)
n1 6= 0

(t,s1) ⇓t (Rval n2,s2)
(e2,s2) ⇓e (Rval n3,s3)
(For e1 e2 t,s3) ⇓t r

(For e1 e2 t,s) ⇓t r
(F4)

(e1,s) ⇓e (Rval n1,s1)
n1 6= 0

(t,s1) ⇓t (Rbreak,s2)

(For e1 e2 t,s) ⇓t (Rval 0,s2)

(F5)

(e1,s) ⇓e (Rval n1,s1)
n1 6= 0

(t,s1) ⇓t (Rval n2,s2)
(e2,s2) ⇓e (r,s3)
¬is_Rval r

(For e1 e2 t,s) ⇓t (r, s3)
(F6)

(e1,s) ⇓e (Rval n1,s1)
n1 6= 0

(t,s1) ⇓t (r,s2)
¬is_Rval r
r 6= Rbreak

(For e1 e2 t,s) ⇓t (r,s2)

Once one has become accustomed to this style of definition, these rules are
quite easy to read. However, even an experienced semanticist may find it difficult
to immediately see whether these rules cover all the cases. Maybe the last two
rules above were surprising? Worse, these rules only provide semantics for ter-
minating executions, i.e. if we want to reason about the behaviour of diverging
evaluations, then these (inductive) rules are not enough as stated.

Another drawback is the duplication that rules for complex languages (even
for our toy FOR language) contain. In each of the four rules above, the first
three lines are almost the same. This duplication might seem innocent but it
has knock-on effects on interactive proofs: the generated induction theorem also
contains duplication, and from there it leaks into proof scripts. In particular,
users are forced to establish the same inductive hypothesis many times (§3.4).

The rules (F2), (F5) and (F6) ensure that the Rfail value is always propa-
gated to the top, preventing the big-step relation from doing the moral equivalent
of getting ‘stuck’ in the small-step sense. Thus, we know that a program diverges
iff it is not related to anything. We could omit these rules if we do not need or
want to distinguish divergence from getting stuck, and this is often done with
big-step semantics.2 However, for the purposes of this paper, we are primarily
interested in the (many) situations where the distinction is important – that is
where the functional big-step approach has the largest benefit.

The above ‘not related’ characterisation of divergence does not yield a useful
principle for reasoning about diverging programs: the relation’s induction prin-
ciple only applies when a program is related to something, not when we know it

2 If we had another mode of failure, e.g., from a raise expression, then these rules
would still be needed to propagate that.

is not related to anything. To define divergence with a relation [18], one adds to
the existing inductive evaluation relation ⇓t a co-inductively defined divergence
relation ⇑t, which provides a useful co-induction principle.

The rules for Seq and For are given below. (S1′) states that a sequence
diverges if its first sub-statement does. (S2′) says that the sequence diverges if
the first sub-statement returns a value, using the ⇓t relation, and the second
sub-statement diverges. Notice the duplication between the definitions of ⇓t and
⇑t: both must allow the evaluation to progress normally up to a particular sub-
statement, and then ⇓t requires it to terminate, while ⇑t requires it to diverge.
This corresponds to the duplication internal to ⇓t for propagating Rbreak and
other exceptional results.

(S1′)
(t1,s) ⇑t

(Seq t1 t2,s) ⇑t
(S2′)

(t1,s) ⇓t (Rval n1,s1)
(t2,s1) ⇑t

(Seq t1 t2,s) ⇑t

(F1′)

(e1,s) ⇓e (Rval n1,s1)
n1 6= 0

(t,s1) ⇑t
(For e1 e2 t,s) ⇑t

(F2′)

(e1, s) ⇓e (Rval n1, s1)
n1 6= 0

(t, s1) ⇓t (Rval n2, s2)
(e2, s2) ⇓e (Rval n3, s3)

(For e1 e2 t,s3) ⇑t
(For e1 e2 t, s) ⇑t

2.3 Functional big-step semantics

The interpreter written in SML, given in §2.1, avoids the irritating duplication
of the conventional big-step semantics. It is also arguably easier to read and
clearly gives some semantics to all cases. So why can we not just take the SML
code and define it as a function in logic? The answer is that the SML code does
not terminate for all inputs, e.g., run_t [] (For (Num 1, Num 1, Exp (Num 1))).

In order to define run_t as a function in logic, we need to make it total
somehow. A technique for doing this is to add a clock to the function: on each
recursive call for which termination is non-obvious, one adds a clock decrement.
The clock is a natural number, so when it hits zero, execution is aborted with a
special time-out signal.

A very simple implementation of the clocked-function solution is to add a
check-and-decrement on every recursive call. The termination proof becomes
trivial, but the function is cluttered with the clock mechanism.

Instead of inserting the clock on every recursive call, we suggest that the clock
should only be decremented on recursive function calls for which the currently
evaluated expressions does not decrease in size. For the FOR language, this
means adding a clock-check-and-decrement only on the looping call in the For

case. In the SML code, this recursive call is performed here:

| run_t s (For (e1, e2, t)) =

...

(Rval _, s3) => run_t s3 (For (e1, e2, t))

In our functional big-step semantics for the FOR language, called sem_t, we
write the line above as follows. Here dec_clock decrements the clock that is
stored in the state.

sem_t s (For e1 e2 t) =

...

(Rval _,s3) ⇒
if s3.clock 6= 0 then
sem_t (dec_clock s3) (For e1 e2 t)

else (Rtimeout,s3)

All other parts of the SML code are directly translated from SML into HOL4’s
logic. The complete definition of sem_t is given below. Because run_e is a pure
total function, it can be translated directly into the HOL4 logic as sem_e without
adding a clock. Here store_var x 0 s is state s updated to have value 0 in
variable x .

sem_t s (Exp e) = sem_e s e
sem_t s (Dec x t) = sem_t (store_var x 0 s) t
sem_t s Break = (Rbreak,s)
sem_t s (Seq t1 t2) =

case sem_t s t1 of
(Rval _,s1) ⇒ sem_t s1 t2

| r ⇒ r
sem_t s (If e t1 t2) =

case sem_e s e of
(Rval n1,s1) ⇒ sem_t s1 (if n1 = 0 then t2 else t1)

| r ⇒ r
sem_t s (For e1 e2 t) =

case sem_e s e1 of
(Rval 0,s1) ⇒ (Rval 0,s1)

| (Rval _,s1) ⇒
(case sem_t s1 t of

(Rval _,s2) ⇒
(case sem_e s2 e2 of

(Rval _,s3) ⇒
if s3.clock 6= 0 then
sem_t (dec_clock s3) (For e1 e2 t)

else (Rtimeout,s3)
| r ⇒ r)

| (Rbreak,s2) ⇒ (Rval 0,s2)
| r ⇒ r)

| r ⇒ r

Note that, in our logic version of the semantics, we have introduced a new
kind of return value called Rtimeout. This return value is used only to signal
that the clock has aborted evaluation. It always propagates to the top, and can
be used for reasoning about divergence preservation (§3.3).

Termination proof We prove termination of sem_t by providing a well-founded
measure: the lexicographic ordering on the clock value and the size of the state-

ment that is being evaluated. This measure works because the value of the clock
is never increased, and, on every recursive call where the clock is not decre-
mented, the size of the statement that is being evaluated decreases.3

No termination proof is required for relational big-step semantics. This re-
quirement is, therefore, a drawback for the functional version. However, the func-
tional representation brings some immediate benefits that are not immediate for
relational definitions. The functional representation means that the semantics
is total (by definition) and that the semantics is deterministic (see §4 for an
account of non-deterministic languages). These are properties that can require
tedious proof for relational definitions.

Semantics of terminating and non-terminating evaluations The sem_t function
terminates for all inputs. However, at the same time, it gives semantics to both
terminating and non-terminating (diverging) evaluations. We say that evaluation
terminates, if there exists some initial value of the clock for which the sem_t

returns Rval. An evaluation is non-terminating if sem_t returns Rtimeout for
all initial values of the clock. In all other cases, the semantics fails. The top-level
semantics is defined formally as follows. There are three observable outcomes:
Terminate, Diverge, and Crash.

semantics t =

if ∃ c v s. sem_t (s_with_clock c) t = (Rval v,s) then Terminate

else if ∀ c. ∃ s. sem_t (s_with_clock c) t = (Rtimeout,s) then Diverge

else Crash

§3.3 verifies a compiler that preserves this semantics, and §4 extends the FOR
language with input, output, and internal non-determinism.

3 Using functional semantics

The previous section showed how big-step semantics can be defined as functions
in logic, and how they avoid the duplication that occurs in conventional big-
step semantics. In this section, we highlight how the change in style of definition
affects proofs that use the semantics. We compare proofs based on the functional
semantics with corresponding proofs based on the relational semantics.

3.1 Rewriting with the semantics

Since the functional semantics is defined as a function, it can be used for evalua-
tion in the logic and used directly for proofs by rewriting. As a simple example,
we can easily show that the Dec statement is an abbreviation for a longer pro-
gram. This proof is just a simple call to the automatic rewriter in HOL4.

` sem_t s (Dec v t) = sem_t s (Seq (Exp (Assign v (Num 0))) t)

3 HOL4’s current definition package requires some help to prove and use the fact that
the clock never increases.

This ability to perform symbolic evaluation within the logic is a handy tool, as
any ACL2 expert will attest [19].

Sometimes rewriting with a functional semantics can get stuck in an infinite
loop. This happens when the left-hand side of the definition, e.g. in our example
sem_t s (For e1 e2 t), matches a subexpression on the right-hand side of the
equation, e.g. sem_t (dec_clock s3) (For e1 e2 t). We use a simple work-
around for this: we define STOP x = x and prove an equation where the right-
hand side is sem_t (dec_clock s3) (STOP (For e1 e2 t)). We ensure that
the automatic simplifier cannot remove STOP and thus cannot apply the rewrite
beyond the potentially diverging recursive call.

Rewriting is possible but often more cumbersome with relational big-step
semantics. In HOL4, every definition of an inductive relation produces a rewrite
theorem of the following form. We only show the cases relating to Seq, eliding
others with ellipses.

` (t,s) ⇓t res ⇐⇒
. . . ∨ . . . ∨ . . . ∨
(∃ s1 t1 t2 n1.

(t = Seq t1 t2) ∧ (t1,s) ⇓t (Rval n1,s1) ∧
(t2,s1) ⇓t res) ∨

(∃ s1 t1 t2 r.
(t = Seq t1 t2) ∧ (res = (r,s1)) ∧ (t1,s) ⇓t (r,s1) ∧
¬is_Rval r) ∨ . . . ∨ . . . ∨ . . . ∨ . . . ∨ . . . ∨ . . . ∨ . . . ∨ . . . ∨ . . .

Such theorems have unrestricted left-hand sides, which easily cause HOL4’s
rewriter to diverge, and right-hand sides that introduce a large number of dis-
junctions. One can often avoid divergence by providing the rewriter with manu-
ally proved theorems with specialised left-hand sides, e.g. (Seq t1 t2,s) ⇓t res.
Functional semantics require less work for use in proofs by rewriting.

3.2 Induction theorem

The ability to rewrite with the functional semantics helps improve the details
of interactive proofs. Surprisingly, the use of functional semantics also improves
the overall structure of many proofs. The reason for this is that the induction
theorems produced by functional semantics avoid the duplication that comes
from the relational semantics.

The induction theorems for the FOR language are shown in Figures 1 and 2.
The induction theorem for sem_t only has one case for the For loop. In contrast,
the induction theorem for the relational semantics has six cases for the For

loop. The duplication in the relation semantics carries over to duplication in
the induction theorem and, hence, to the structure of interactive proofs, making
them longer and more repetitive. This difference is significant for languages with
complex program constructs.

Avoiding duplication in relations The duplication problem can be avoided in
relational big-step semantics. A trick is to define the evaluation rules such that

` (∀ s e. P s (Exp e)) ∧
(∀ s x t. P (store_var x 0 s) t ⇒ P s (Dec x t)) ∧
(∀ s. P s Break) ∧
(∀ s t1 t2.

(∀ v2 s1 v5.
(sem_t s t1 = (v2,s1)) ∧ (v2 = Rval v5) ⇒ P s1 t2) ∧

P s t1 ⇒
P s (Seq t1 t2)) ∧

(∀ s e t1 t2.
(∀ v2 s1 n1.

(sem_e s e = (v2,s1)) ∧ (v2 = Rval n1) ⇒
P s1 (if n1 = 0 then t2 else t1)) ⇒

P s (If e t1 t2)) ∧
(∀ s e1 e2 t.

(∀ v2 s1 n1 v ′
2 s2 n ′

1 v ′′
2 s3 n ′′

1 .

(sem_e s e1 = (v2,s1)) ∧ (v2 = Rval n1) ∧ n1 6= 0 ∧
(sem_t s1 t = (v ′

2,s2)) ∧ (v ′
2 = Rval n ′

1) ∧
(sem_e s2 e2 = (v ′′

2 ,s3)) ∧ (v ′′
2 = Rval n ′′

1) ∧
s3.clock 6= 0 ⇒
P (dec_clock s3) (For e1 e2 t)) ∧

(∀ v2 s1 n1.

(sem_e s e1 = (v2,s1)) ∧ (v2 = Rval n1) ∧ n1 6= 0 ⇒
P s1 t) ⇒

P s (For e1 e2 t)) ⇒
∀ v v1. P v v1

Fig. 1. Induction theorem for functional big-step semantics.

` . . . ∧ . . . ∧ . . . ∧ . . . ∧ . . . ∧ . . . ∧ . . . ∧ . . . ∧
(∀ s s1 e1 e2 t.

(e1,s) ⇓e (Rval 0,s1) ⇒ P (For e1 e2 t,s) (Rval 0,s1)) ∧
(∀ s s1 e1 e2 t r.

(e1,s) ⇓e (r,s1) ∧ ¬is_Rval r ⇒ P (For e1 e2 t,s) (r,s1)) ∧
(∀ s s1 s2 s3 e1 e2 t n1 n2 n3 r.

(e1,s) ⇓e (Rval n1,s1) ∧ n1 6= 0 ∧ P (t,s1) (Rval n2,s2) ∧
(e2,s2) ⇓e (Rval n3,s3) ∧ P (For e1 e2 t,s3) r ⇒
P (For e1 e2 t,s) r) ∧

(∀ s s1 s2 e1 e2 t n1.

(e1,s) ⇓e (Rval n1,s1) ∧ n1 6= 0 ∧ P (t,s1) (Rbreak,s2) ⇒
P (For e1 e2 t,s) (Rval 0,s2)) ∧

(∀ s s1 s2 s3 e1 e2 t n1 n2 r.
(e1,s) ⇓e (Rval n1,s1) ∧ n1 6= 0 ∧ P (t,s1) (Rval n2,s2) ∧
(e2,s2) ⇓e (r,s3) ∧ ¬is_Rval r ⇒
P (For e1 e2 t,s) (r,s3)) ∧

(∀ s s1 s2 e1 e2 t n1 r.
(e1,s) ⇓e (Rval n1,s1) ∧ n1 6= 0 ∧ P (t,s1) (r,s2) ∧ ¬is_Rval r ∧
r 6= Rbreak ⇒
P (For e1 e2 t,s) (r,s2)) ⇒

∀ ts rs. ts ⇓t rs ⇒ P ts rs

Fig. 2. Induction theorem for relational big-step semantics. Parts omitted with ‘. . . ’.

program constructs are described by only one rule each. Below is an example of
how one can package up all of the rules about For into one giant rule.

(e1,s) ⇓e (r1,s1) ∧
(if (r1 = Rval n1) ∧ n1 6= 0 then

(t,s1) ⇓t (r2,s2) ∧
if r2 = Rval n2 then
(e2,s2) ⇓e (r3,s3) ∧
if r3 = Rval n3 then (For e1 e2 t,s3) ⇓t result
else result = (r3,s3)

else result = (r2,s2)
else (result = (r1,s1)))

(For e1 e2 t,s) ⇓t result

By avoiding the duplication in the rules, the induction theorem also avoids the
duplication. Writing packaged rules, as shown above, is unusual and certainly not
aesthetically pleasing. However, if relational definitions are to be used, packaging
evaluation rules as above is potentially less intrusive to proofs than use of the
pretty-big-step approach, since it does not introduce new data constructors.4

3.3 Example compiler verification

Next, we outline how functional big-step semantics support compiler verification,
proving that a compiler preserves the observable behaviour. Our compiler targets
a simple assembly-like language, where the code is a list of instructions (instr).

instr = Add reg reg reg | Int reg int | Jmp num | JmpIf reg num

The compiler, compile, is a composition of three phases. The first
phase, phase1, simplifies For and Dec; phase2 splits assignments into simple
instruction-like assignments, but stays within the source language; and phase3

reduces the remaining subset of the source language into a list of target instruc-
tions. The first two parameters to phase3 accumulate code location information.

compile t = phase3 0 0 (phase2 (phase1 t))

The first phase is a source-to-source transformation that simplifies For and
Dec as follows. Here Loop is an abbreviation: Loop t = For (Num 1) (Num 1) t .

phase1 (For g e t) = Loop (If g (Seq (phase1 t) (Exp e)) Break)

phase1 (Dec x t) = Seq (Exp (Assign x (Num 0))) (phase1 t)

The compilation function phase1 has a simple correctness theorem that can
be proved in less than 20 lines of HOL4 script using the induction from Fig. 1.

` ∀ s t. sem_t s (phase1 t) = sem_t s t

4 Note that such packaged big-step rules are easy to define in HOL4. However,
they do not fit well with Coq’s default mechanism for defining inductive relations.
Charguéraud’s pretty-big-step approach was developed in the context of Coq.

We also prove that phase1 preserves the observable semantics:

` ∀ t. semantics (phase1 t) = semantics t

Subsequent phases assume that For statements have been simplified to Loop.
The verification of the second phase, phase2, is almost as simple but a little
longer because phase2 invents variable names to hold temporary results.

The third phase compiles the resulting subset of the FOR language into a list
of instructions in the assembly-like target language. The crucial lemma, stated
below, was proved by induction using the theorem shown in Fig. 1. This lemma’s
statement can informally be read as: if the source semantics sem_t dictates that
program t successfully evaluates state s1 to state s2, the source program t is
within the allowed syntactic subset, and the compiled code for t is installed in
a store-related target state x ; then the target semantics sem_a evaluates x to a
new target state x ′ that is store-related to s2. Below, sem_a is the functional big-
step semantics for the target assembly language. The sem_a function executes
one instruction at a time and is tail-recursive; its lengthy definition is omitted.
phase3_subset defines the syntactic restrictions that programs must follow after
phases 1 and 2. The ellipses elide several detailed parts of the conclusion that
are only necessary to make the induction go through: in particular, where the
program counter will point at exit based on the result res.

` ∀ s1 t res s2 x xs ys b.
(sem_t s1 t = (res,s2)) ∧ phase3_subset t ∧ (x.store = s1) ∧
(x.pc = LENGTH xs) ∧
(x.instrs = xs ++ phase3 (LENGTH xs) b t ++ ys) ∧ res 6= Rfail ∧
((res = Rbreak) ⇒ LENGTH (xs ++ phase3 (LENGTH xs) b t) ≤ b) ⇒
∃ x ′. (sem_a x = sem_a x ′) ∧ (x ′.store = s2) ∧ . . .

From the lemma above, it is easy to prove that phase3 0 0 t preserves the
observable semantics, if t is in the subset expected by the third phase and t does
not Crash in the source semantics.

` ∀ t.
semantics t 6= Crash ∧ phase3_subset t ⇒
(asm_semantics (phase3 0 0 t) = semantics t)

Here asm_semantics is the observable semantics of the target assembly language.

asm_semantics code =

if ∃ c s. sem_a (a_state code c) = (Rval 0,s) then Terminate

else if ∀ c. ∃ s. sem_a (a_state code c) = (Rtimeout,s) then Diverge

else Crash

The following top-level compiler correctness theorem is produced by combin-
ing the semantics preservation theorems from all three phases. The assumption
that the source semantics does not Crash is implied by a simple syntactic check
syntax_ok, which checks that all variables been declared (Dec) and that all
Break statements are contained within For loops.

` ∀ t. syntax_ok t ⇒ (asm_semantics (compile t) = semantics t)

3.4 Comparison with proof in relational semantics

We provide a corresponding proof of correctness for phase1 in the relational
semantics. As a rough point of comparison, our relational proof required 43 lines
while the functional big-step proof required just 18 lines. The proof is split into
two parts, corresponding to the relations defining our big-step semantics:

` ∀ s t res. (t,s) ⇓t res ⇒ (phase1 t,s) ⇓t res
` ∀ s t. (t,s) ⇑t ⇒ (phase1 t,s) ⇑t

The advantage of (non-looping) functional rewriting is apparent in our proofs:
we often had to manually control where rewrites were applied in the relational
proof. Additionally, we had to deal with significantly more cases in the relational
proofs; these extra cases came from two sources, namely, the ones arising from an
additional co-inductive proof for diverging programs, and extra (similar) cases
in the induction theorems.

The additional co-inductive proof is a good point of comparison, since our
technique of decrementing the clock only on recursive calls in the functional
big-step semantics gives us divergence preservation for free in compilation steps
that do not cause additional clock ticks. The cases arising in our co-inductive
proof also required a different form of reasoning from the inductive proof; this
naturally arises from the difference between induction and co-induction but it
meant that we could not directly adapt similar cases across both proofs.

The top-level observable semantics can be similarly defined for relational
semantics:

rel_semantics t =

if ∃ v s. (t,init_store) ⇓t (Rval v,s) then Terminate

else if (t,init_store) ⇑t then Diverge

else Crash

So we can prove the correctness of phase1 with respect to rel_semantics:

` ∀ t.
rel_semantics t 6= Crash ⇒
(rel_semantics (phase1 t) = rel_semantics t)

This proof requires proving that the relations (⇓t, ⇑t) are disjoint:

` ∀ s t res. (t,s) ⇓t res ⇒ ¬(t,s) ⇑t

We also attempted a proof of phase1 with a relational pretty-big-step se-
mantics; we found this semantics surprisingly difficult to use in HOL4. Pretty-
big-step semantics requires the introduction of additional intermediate terms to
factorise evaluation of sub-terms. Hence, the generated induction theorem re-
quires reasoning over these intermediate terms. However, in our compiler proofs,
we are typically concerned with the original syntactic terms – those are the only
ones mentioned by the compiler – so this induction theorem cannot be applied
directly, unlike in the other two semantics. There are ways around this: one can,
for example, use an induction theorem that only concerns the original syntactic

terms or induct on the size of derivations. Neither of these approaches are auto-
matically supported in HOL4, and our proof of phase1 semantics preservation
using the latter approach took 81 lines. Some of Charguéraud’s big-step and
pretty-big-step equivalence proofs in Coq also needed to manually prove and
use induction on derivation sizes. Additionally, a separate proof is still required
for divergence preservation in the co-inductive interpretation of these rules; this
requires the use of its co-induction theorem, which also has similar issues with
intermediate terms.

To further validate the functional big-step approach, we prove the equiva-
lence of the functional big-step semantics (sem_t) and the relational semantics
(⇓t, ⇑t). (We also prove the equivalence with a small-step semantics in §7).
The equivalence is separated into two theorems: the first shows equivalence for
terminating programs while the latter shows equivalence on diverging programs.

` ∀ s t r s ′.

(t,s) ⇓t (r,s ′ with clock := s.clock) ⇐⇒
∃ c′. (sem_t (s with clock := c′) t = (r,s ′)) ∧ r 6= Rtimeout

` ∀ s t.
(∀ c. FST (sem_t (s with clock := c) t) = Rtimeout) ⇐⇒ (t,s) ⇑t

The proofs rely on the disjointness lemma above and a determinism lemma
for the relational semantics:

` ∀ s t res. (t,s) ⇓t res ⇒ ∀ res ′. (t,s) ⇓t res ′ ⇒ (res = res ′)

They also rely on an analogue of determinism for the functional big-step
semantics: if a program does not time out for a given clock, then every increment
to the clock gives the same result5.

` ∀ s t r s ′.

(sem_t s t = (r,s ′)) ∧ r 6= Rtimeout ⇒
∀ k.
sem_t (s with clock := s.clock + k) t =

(r,s ′ with clock := s ′.clock + k)

These lemmas are easy to prove compared to the main body of the equivalence
proof, and our examples above demonstrate that the number of such lemmas
required is comparable between the two semantics.

4 Non-determinism

We now add non-deterministic evaluation order and input/output expressions to
the FOR language. The only syntactic change is the addition of two expressions:
Getchar and Putchar e. However, the observable behaviours of programs have
changed significantly. Instead of doing exactly one of terminating, diverging, or

5 This lemma also implies that if a program times out for a given clock, then it times
out for all smaller clocks.

crashing, a program can now exhibit a set of those behaviours. Furthermore, both
termination and divergence results now include the I/O stream that the program
consumed/produced. For technical reasons, it also contains the choices made by
the non-deterministic evaluation order (see §7). In the type of observation, the
llist type is the lazy list type that contains both finite and infinite lists, and +

is the type constructor for disjoint unions.

observation =

Terminate ((io_tag + bool) list)

| Diverge ((io_tag + bool) llist)

| Crash

As a function, sem_t seems to be inherently deterministic: we cannot simply
have it internally know what the next input character is, or choose which sub-
expression to evaluate first. We are left with two options: we can factor out
the input stream and all choices into the state argument of sem_t and then
existentially quantify them in the top-level semantic function to build a set of
results; or alternatively, we can change the type of sem_t to return sets of results
(alongside partial I/O traces). Here we take the first approach which leads to
only minor changes in the definition of sem_t.

First, the state argument of sem_t gets three new fields: io_trace to record
the characters read and written; input to represent the (possibly infinite) input
stream; and non_det_o which represents an infinite stream of decisions that
determine the subexpression evaluation ordering. We include the inputs in the
io_trace to accurately model the order in which the I/O operations happened.

io_tag = Itag int | Otag int

state =

<| store : (string 7→ int);

clock : num;

io_trace : ((io_tag + bool) list);

input : (char llist);

non_det_o : (num -> bool) |>

Because all of our changes are limited to the expression language, and en-
capsulated in the extended state argument, which sem_t does not access, the
definition of sem_t looks identical to the previous one. The changes to sem_e

are limited to the Add case (where a non-deterministic choice is made), and two
new cases for the new expressions.

sem_e s (Putchar e) =

case sem_e s e of
(Rval n1,s1) ⇒

(Rval n1,s1 with io_trace := s1.io_trace ++ [INL (Otag n1)])

| r ⇒ r
sem_e s Getchar =

(let (v,rest) = getchar s.input in
(Rval v,

s with <|input := rest; io_trace := s.io_trace ++ [INL (Itag v)]|>))

sem_e s (Add e1 e2) =

(let ((fst_e,snd_e),nd_o,switch) = permute_pair s.non_det_o (e1,e2) in
case
sem_e

(s with

<|non_det_o := nd_o; io_trace := s.io_trace ++ [INR switch]|>)
fst_e

of
(Rval fst_n,s1) ⇒
(case sem_e s1 snd_e of

(Rval snd_n,s2) ⇒
(let (n1,n2) = unpermute_pair (fst_n,snd_n) switch in

(Rval (n1 + n2),s2))
| r ⇒ r)

| r ⇒ r)

The Add case is similar to before, but uses the permute_pair function to swap
the sub-expressions or not, depending on the oracle. It also returns a new oracle
ready to get the next choice, and whether or not it switched the sub-expressions.
The latter is used to un-permute the values to apply the primitive + in the right
order (which would matter for a non-commutative operator). Getchar similarly
consumes one input and updates the state. Putchar adds to the I/O trace.

Critically, the above modifications are orthogonal to the clock, and do not
affect the termination proof, or the usefulness of the induction theorems and
rewriting equations. The changes to the semantics function are explained next.6

semantics t input (Terminate io_trace) ⇐⇒
∃ c nd i s.

(sem_t (init_st c nd input) t = (Rval i,s)) ∧
(FILTER ISL s.io_trace = io_trace)

semantics t input Crash ⇐⇒
∃ c nd r s.

(sem_t (init_st c nd input) t = (r,s)) ∧
((r = Rbreak) ∨ (r = Rfail))

semantics t input (Diverge io_trace) ⇐⇒
∃nd.

(∀ c. ∃ s. sem_t (init_st c nd input) t = (Rtimeout,s)) ∧
(io_trace =∨

c.
fromList

(FILTER ISL (SND (sem_t (init_st c nd input) t)).io_trace))

Firstly, semantics is now a predicate7 over programs, inputs, and observa-
tion. Termination and crashing are still straightforward: the non-determinism

6 Here FILTER is ordinary filtering over a list, and ISL is the predicate for the left
injection of a sum (disjoint union), so the FILTER ISL applications get the I/O
actions and discard the evaluation ordering choices.

7 Note that HOL4 identifies the types α -> bool and α set.

oracle and input are quantified along with the clock, and the resulting I/O trace
is read out of the result state. We filter the trace so it only contains the I/O ac-
tions and not the record of the non-determinism oracle. Some choices of oracles
might lead to a crash whereas others might lead to different terminating results.

Divergence is more subtle. First, note that a program can both terminate
and diverge depending on evaluation order. For example, in the following x can
be assigned either 1 or 0, depending on which sub-expression is evaluated first.

Seq (Exp (Add (Assign "x" 1) (Assign "x" 0)))

(For (Var "x") (Num 1) (Exp (Num 1)))

Thus, in the definition of semantics, we first existentially quantify the non-
determinism, then check that it results in a timeout for all clock values given that
particular oracle. To ensure that the resulting I/O trace is correct, we consider
the set of all I/O traces for every possible clock in the complete partial order of
lazy lists ordered by the prefix relation. This set forms a chain, because we prove
that increasing the input clock does not alter the I/O already performed. Hence,
the resulting I/O behaviour is the least upper bound, which can be either a
finite or infinite lazy list. Operationally, as we increase the clock, we potentially
see more I/O behaviour, and the least upper bound defines the lazy list that
incorporates all of these. (Notation: the

∨
binder takes lubs in this PO.)

Adapting the compiler verification Adapting the compiler verification to the I/O
and non-determinism extension is an almost trivial exercise. The I/O streams
were modelled in the same way in the assembly language, which we kept de-
terministic. The new proof engineering work stems mostly from the substantial
change to the definition of the top-level semantics function semantics. Due to
non-determinism, which the compiler removes, the correctness theorem is now
stated as a subset relation: every behaviour of the generated (deterministic)
assembly code is also a behaviour of the (non-deterministic) source program.

` ∀ t inp. syntax_ok t ⇒ asm_semantics (compile t) inp ⊆ semantics t inp

Unclocked relational big-step Non-determinism can be handled naturally with
two big-step rules for Add, although that does introduce duplication. A big-step
relation can also be used to collect I/O traces [10,17,20]. However, this requires
a mixed co-inductive/inductive approach for non-terminating programs, and we
can no longer choose to equate divergence with a failure to relate the program
to anything.

Concurrency The techniques described in this section can support functional
big-step semantics for a large variety of practical languages, but they do share
a significant limitation with other big-step approaches: concurrency. Concur-
rent execution would require interleaving the evaluation of multiple expressions,
whereas the main principle of a big-step semantics (ours included) is to evaluate
an expression to a value in one step. Our non-determinism merely selects which
to do first. Work-arounds, such as having sem_t return sets of traces of inter-
thread communications, might sometimes be possible, but would significantly
affect the shape of the definition of the semantics.

5 Type soundness

Whereas big-step semantics are common in compiler verification, small-step se-
mantics enable the standard approach to type soundness by preservation and
progress lemmas [29]. A type soundness theorem says that well-typed programs
do not crash; they either terminate normally or diverge. As Siek notes [25], a
critical thing a semantics must provide is a good separation between divergence
and crashing, and a clocked big-step semantics does this naturally. We have ex-
perimented with two type systems and found that functional big-step semantics
works very well for proving type soundness.

Our first example is for the FOR language. We prove that syntax_ok pro-
grams do not evaluate to Rfail. The key is to use the induction theorem associ-
ated with the functional semantics, rather than rule induction derived from the
type system.

We carry the same approach to a language with more interesting type sys-
tems: the Core ML language from Wright and Felleisen [29] equipped with a
functional big-step semantics closely resembling an ML interpreter. The type
system is more complex than the FOR language’s, supporting references, excep-
tions, higher-order functions and Hindley-Milner polymorphism. However, this
extra complexity in the type system factors out neatly, and does not disrupt the
proof outline.

Our approach is similar to the one described by Siek [26] (followed by Rompf
and Amin [24]) who uses a clocked functional big-step semantics and demon-
strates the utility of the induction theorem arising from the clocked semantics.
As a result, our main type soundness proof, which interacts with the big-step
semantics, is easy. Siek’s example type system is simpler than Core ML’s: it
has no references or polymorphism; but these difficult aspects can be isolated.
The most difficult lemmas in our proof are about the type system, and rely on
α-equivalence reasoning over type schemes. Similar lemmas, concerning the type
system only, were proved by Tofte [27].

Our statement of type soundness for Core ML is: if a program is well-typed,
then for all clocks, the semantics of the program is either Rtimeout, an exception,
or a value of the correct type – never Rfail. The universal quantification of clocks
makes this a strong statement, since it implies diverging well-typed programs also
cannot fail. For contrast, we have also written un-clocked big-step semantics for
Core ML and proved a similar theorem: if a program is well-typed and converges
to r , then r is an exception or value of the correct type, but never Rfail. The
proof by induction is essentially the same as for the clocked semantics, and all the
type-system lemmas can be re-used exactly, but the conclusion is much weaker
because diverging programs do not satisfy the assumption. The proof is also
longer (330 lines vs. 200) because of the duplication in the relational semantics.

6 Logical relations

The technique of step-indexed logical relations [2] supports reasoning about pro-
grams that have recursive types, higher-order state, or other features that intro-

duce aspects of circularity into a language’s semantics [1,12]. The soundness of
these relations is usually proved with respect to a small-step semantics, because
the length of a small-step trace can be used to make the relation well-founded
when following the structure of the language’s cyclic constructs (e.g., when fol-
lowing a pointer cycle in the heap or unfolding a recursive type). Here we show
that the clock in a functional big-step semantics can serve the same purpose.

Because our main purpose here is to illustrate functional big-step semantics,
we first present the relation and defer its motivation to the end of this section.
For now, it suffices to say that it has some significant differences from the existing
literature, because it is designed to validate compiler optimisations in an untyped
setting.

We start with an untyped lambda calculus with literals, variables (using de
Bruijn indices), functions, and a tick expression that decrements the clock. The
semantics will also use closure values, and a state with a clock.

exp = Lit lit | Var num | App exp exp | Fun exp | Tick exp

v = Litv lit | Clos env exp

env = v list

state = <| clock : num; store : env |>

We can then define the function sem, which implements call-by-value evalu-
ation and decrements the clock on every function call. EL gets the nth element
of a list.

sem env s (Lit i) = (Rval (Litv i),s)
sem env s (Var n) =

if n < LENGTH env then (Rval (EL n env),s) else (Rfail,s)
sem env s (App e1 e2) =

case sem env s e1 of
(Rval v1,s1) ⇒
(case sem env s1 e2 of

(Rval v2,s2) ⇒
if s2.clock 6= 0 then

case v1 of
Litv v4 ⇒ (Rfail,s2)

| Clos env ′ e ⇒ sem (v2::env ′) (dec_clock s2) e
else (Rtimeout,s2)

| r ⇒ r)
| r ⇒ r
sem env s (Fun e) = (Rval (Clos env e),s)
sem env s (Tick e) =

if s.clock 6= 0 then sem env (dec_clock s) e else (Rtimeout,s)

The top-level semantic function’s definition is similar to the FOR language’s
(§2).

We then define the relations val_rel, which relates two values; exec_rel,
which relates two environment/store/expression triples (i.e., the inputs to sem);
and state_rel, which relates two stores; all at a given index.

val_rel i (Litv l) (Litv l ′) ⇐⇒ (l = l ′)
val_rel i (Clos env e) (Clos env ′ e ′) ⇐⇒
∀ i ′ a a ′ s s ′.

i ′ < i ⇒
state_rel i ′ s s ′ ∧ val_rel i ′ a a ′ ⇒
exec_rel i ′ (a::env,s,e) (a ′::env ′,s ′,e ′)

val_rel i (Litv l) (Clos env e) ⇐⇒ F

val_rel i (Clos env e) (Litv l) ⇐⇒ F

exec_rel i (env,s,e) (env ′,s ′,e ′) ⇐⇒
∀ i ′. i ′ ≤ i ⇒
(let (res1,s1) = sem env (s with clock := i ′) e in
let (res2,s2) = sem env ′ (s ′ with clock := i ′) e ′ in

case (res1,res2) of
(Rval v1,Rval v2) ⇒
(s1.clock = s2.clock) ∧ state_rel s1.clock s1 s2 ∧
val_rel s1.clock v1 v2

| (Rtimeout,Rtimeout) ⇒ state_rel s1.clock s1 s2
| (Rfail,_) ⇒ T

| r ⇒ F)

state_rel i s s ′ ⇐⇒
LIST_REL (λ a ′ a. val_rel i a ′ a) s.store s ′.store

The definitions of val_rel and state_rel are typical of a logical relation;
exec_rel is where the relation interacts with the functional big-step semantics.
In the small-step setting, exec_rel would say that the two triples are related if
they remain related for i steps of the small-step semantics. With the functional
big-step semantics, we instead check that the results of the sem function are
related when we set the clock to a value less than i .

From here we prove that the relation is compatible with the language’s syn-
tax, that it is reflexive and transitive, that it is sound with respect to contextual
approximation, and finally that β-value conversion is in the relation, and hence
a sound optimisation for the language at any subexpression. Most of the proof is
related to the semantic work at hand, rather than the details of the semantics,
but we do need to rely on several easy-to-prove lemmas about the clock that
capture intuitive aspects of what it means to be a clocked evaluation function.
They correspond to the last lemma from §3.4.

Motivation The language and relation are designed as a prototype of an in-
termediate language for CakeML that is similar to the clambda intermediate
language in the OCaml compiler [9]. Because this is an untyped intermediate
language for a typed source language, the compiler should be able to change a
failing expression into anything at all. We know that we will never try to compile
an expression that fails, and this design allows us to omit run-time checks that
would otherwise be needed to signal failure. This is why exec_rel relates Rfail
to anything, and why our relation is not an equivalence, but an approximation:
the compiler must never convert a good expression into one that fails.

Furthermore, the compiler must not convert a diverging program into one
that converges (or vice-versa). This is why Rtimeout is only related to itself,

and why the clocks are both set to the same i ′ when running the expressions. In
a typed setting, the clock for the right-hand argument is existentially quantified,
thereby allowing a diverging expression to be related to a converging one, and if
one wants to show equivalence, one proves the approximation both ways. Because
of our treatment of failure, that is not an option here. The drawback is that we
cannot support transformations that increase the number of clock ticks needed.
For transformations that might reduce the number of ticks, including our β-value
conversion, the transformation just needs to introduce extra Tick instructions.

All of the above applies in a small-step setting too. However, the functional
big-step approach automatically has some flexibility for changing the amount of
computation done. For example, both 1 + 2 and 3 evaluate with the same clock,
and so this type of logical relation could be used to show that constant folding
is a sound optimisation without added Tick instructions.

7 Equivalence with small-step semantics

We build a straightforward small-step semantics for the FOR language by adding
a Handle statement to the language, to stop the propagation of Break statements
upward, and implement For as follows (we write Seq as an infix ;):

(For e1 e2 t, s) →t (Handle (If e1 (t;Exp e2;For e1 e2 t) (Exp (Num 0))),s)

To prove the equivalence of the functional big-step and small-step, we need
two lemmas. First, that the functional semantics only gives Rtimeout with a
clock of 0 (which is trivial to prove). Second, that any result of the functional
semantics has a corresponding trace through the small-step semantics that is
long enough. In the theorem below, we represent the small-step trace with a
list so that we can check its length. The check_trace predicate checks that it
is indeed a trace of →t steps. The length check ensures that if the functional
big-step diverges, then we will be able to build a small-step trace of arbitrary
length, and so it diverges too. The subtraction calculates how many clock ticks
the evaluation actually used.

` (sem_t s t = r) ⇒
∃ tr.

tr 6= [] ∧ s.clock − (SND r).clock ≤ LENGTH tr ∧
check_trace (λ st. some st ′. st →t st ′) tr ∧
(HD tr = (s.store,t_to_small_t t)) ∧ res_rel_t r (LAST tr)

One would expect such a theorem building small-step traces from big-step
executions to show up in any big-step/small-step equivalence proof. The extra
length check adds very little difficulty to the proof, but ensures that we do not
need to explicitly prove anything about divergence, or additionally reason going
from small-step traces to big-step executions. Similar to type soundness (§5), we
prove this using the induction principle of sem_t.

In the non-deterministic case, we extend the state of the small-step semantics
with the same oracle that the functional big-step semantics uses, and we use the

oracle to choose which sub-expression of an Add to start evaluating. AddL and
AddR expressions are included to mark which argument is being evaluated, so
that we do not consult the oracle in subsequent steps for the same decision or
switch back-and-forth between subexpressions. For example, if the oracle returns
false, we start evaluating the left sub-expression on the updated oracle state. The
oracle_upd function puts the new oracle into s and adds F to its io_trace.

oracle_get s.non_det_o = (F,o′)

(Add e1 e2, s) →e (AddL e1 e2,oracle_upd s (F,o′))

Thus, the small-step semantics remains non-deterministic, and we can use the
same approach as above. There are three significant differences. One, we look at
the list of all I/O actions and non-determinism oracle results stored in io_trace
instead of the return value. This is why we need to record the oracle results
there. Two, our trace-building must account for the AddL and AddR expressions.
Three, we must know that the io_trace is monotone with respect to stepping in
the small-step semantics, and with respect to the clock in the functional big-step
semantics. The only difficulty in this proof, over the deterministic one, was in
handling the AddL and AddR forms, not in dealing with the oracle or trace.

To get an equivalent non-deterministic labelled transition system (LTS) with
I/O actions as labels, one would prove the equivalence entirely in the small-step
world with a simulation between the oracle small-step and the LTS semantics.

In the above, there was nothing special about the FOR language itself, and
the same connection to small-step semantics could be proved for any situation
where the big-step to small-step lemma above holds, along with other basic
properties of the semantics. In fact, our proof for the FOR language is based on
a general theorem that distills the essence of the approach. (We omit the details,
which are obscured by the need to treat the two kinds of semantics abstractly).

8 Discussion and related work

Logical foundations All of our examples are carried out in classical higher-order
logic of the kind supported by HOL4, HOL Light, Isabelle/HOL, etc. However,
there is nothing inherently non-constructive about our techniques, and we expect
that they would carry over to Coq. We rely on the ability to make definitions
by well-founded recursion (usually on the combined structure of the terms, and
a natural number index), derive the corresponding induction principles, and
take lubs in the CPO of lazy lists. Occasionally, we make a non-constructive
definition for convenience (e.g., of the top-level semantics in §2, whereas §4 has
a constructive definition), our proofs do not rely on classical reasoning (other
than in HOL4’s implementation of the features mentioned above).

Testing semantics To test a semantics, one must actually use it to evaluate
programs. Functional big-step semantics can do this out-of-the-box, as can many
small-step approaches [13,14]. Where semantics are defined in a relational big-
step style, one needs to build an interpreter that corresponds to the relation

and verify that they are equivalent – essentially, building a functional big-step
semantics anyway. This construction and proof has been done by hand in several
projects [6,7,22], and both Coq and Isabelle have mechanisms for automatically
deriving functions from inductive relations, although under certain restrictions,
and not for co-inductive relations [5,28].

Interpreters and relational big-step semantics The essence of the functional big-
step approach is that the semantics are just an interpreter for the language,
modified with a clock to make it admissible in higher-order logic. In this sense,
we are just following Reynolds’ idea of definitional interpreters [23], but using
higher-order logic, rather than a programming language, as the meta-language.
Using a clock to handle potential non-termination keeps the mathematics unso-
phisticated, and fits in well with the automation available in HOL4.

Other approaches are possible, such as Danielsson’s use of a co-inductive par-
tiality monad [11] to define functional big-step semantics. He defines a compiler
from a lambda calculus with non-determinism to a stack-based virtual machine,
and verifies it, including divergence preservation, in Agda. The compiler that we
verify here targets a language with lower abstraction. A thorough comparison
is difficult to make because the necessary mixed recursion/corecursion is not
available in HOL.

Nakata and Uustalu [20] give a functional big-step semantics whose co-
domain is (possibly infinite) traces of all states the program has passed through,
rather than final results. Although their function is recursive, it relies on co-
recursive helpers for sequencing and looping: in this way it looks less like a
definitional interpreter. They prove equivalence between a variety of trace-based
semantics, but do not use the semantics for compiler verification or type sound-
ness. Our FOR language with I/O also keeps traces – although not of all of the
program states passed through – but they are kept in the state, rather than in
the function’s result. Instead of using co-recursion, we take a least upper bound
to build possibly infinite traces of I/O actions.

Several improvements have been made to traditional inductive relational big-
step semantics. Leroy and Grall show how to use co-inductive definitions to
give a semantics to a lambda-calculus and verify type soundness, and compiler
correctness (for a compiler to a VM) while properly handling divergence [18].

Charguéraud’s pretty-big-step semantics keeps the co-induction and removes
some of the duplication by representing partial computations with new syntax
and providing rules for completing the evaluation of the partially evaluated syn-
tax [10]. For the FOR language, he introduces new syntax, For1, For2, and
For3, that contain semantic contexts for partial evaluations. The evaluation rule
for For has a hypothesis about evaluation of For1, which represents the state
of evaluation after the first expression in For has been evaluated. Similarly, the
semantics of For1 is given semantics in terms of For2, and so forth. The pretty-
big-step approach leads to many rules, but there are fewer than in a conventional
big-step definitions, and the duplication is removed by factoring it out into rules
that introduce For1, For2, and For3.

Bach Poulsen and Mosses show how to derive a (co-inductive) pretty-big-step
semantics from a certain kind of small-step semantics (MSOS). This allows one to
get the conciseness of a small-step definition and some of the reasoning benefits of
a big-step style [3]. They further show that the duplication between the inductive
and co-inductive rules can be reduced by encoding in the state whether the
computation is trying to diverge or converge, under certain restrictions [4]. Their
approach to encoding control-flow effects in the state could be applied in the
functional big-step setting. From the point of view of writing an interpreter, this
would correspond to using a state monad to encode an exception monad.

Nipkow and Klein use an inductive big-step semantics for a simple imperative
language, along with a small-step semantics proved equivalent, and show how to
verify a compiler for it [21]. The language cannot have run-time errors, so they
do not have to use co-induction. (When they add a type system and possible
runtime errors, they switch to small-step). However, their compiler correctness
proof and big-step/small-step equivalence proofs each rely on two lemmas. The
first assumes a converging big-step execution and builds a small-step trace (their
target language has a small-step semantics), just like our corresponding proofs in
§3.3 and §7. Their second assumes a small-step trace and shows that the big-step
semantics converges to the right thing. With functional big-step semantics, we do
not need this direction because we are in a deterministic setting and we correlate
the trace length with clock in the first lemma. This is significant because the
second lemma has the more difficult proof: any machine state encountered when
running the compiled program must be related back to some source program.

Functional big-step in CakeML At the time of writing, the CakeML compiler
has 12 intermediate languages (ILs), totaling ≈ 5, 800 lines. There are about
≈ 40, 000 lines of proof about them. The semantics of each IL is defined in the
functional big-step style, with added support for I/O using the techniques from
§4. The lowest-level ILs are assembly and machine-code-like languages. Their
functional big-step semantics are formulated as tail-recursive functions.

9 Conclusion

We have shown how to take an easy to understand interpreter and use it as a
formal semantics suitable for use in an interactive theorem prover. To make this
possible we added clocks and oracles to the interpreter. Although our example
FOR language is simple, it exhibits a wide range of programming language fea-
tures including divergence, I/O, exceptions (Break), and stores. We have also
shown how the functional big-step style can support functional language seman-
tics with Core ML and call-by-value lambda calculus examples.

Acknowledgements. We thank Arthur Charguéraud for advice on Coq and

pretty-big-step. The first author was supported by the EPSRC [EP/K040561/1]. The

second author was partially supported by the Swedish Research Council. NICTA is

funded by the Australian Government through the Department of Communications

and the Australian Research Council through the ICT Centre of Excellence Program.

References

1. A. J. Ahmed. Step-indexed syntactic logical relations for recursive and quantified
types. In Programming Languages and Systems, 15th European Symposium on Pro-
gramming, ESOP 2006, Proceedings, pages 69–83, 2006. doi:10.1007/11693024_6.

2. A. W. Appel and D. A. McAllester. An indexed model of recursive types for
foundational proof-carrying code. ACM Trans. Program. Lang. Syst., 23(5):657–
683, 2001. doi:10.1145/504709.504712.

3. C. Bach Poulsen and P. D. Mosses. Deriving pretty-big-step semantics from
small-step semantics. In Programming Languages and Systems - 23rd Euro-
pean Symposium on Programming, ESOP 2014, Proceedings, pages 270–289, 2014.
doi:10.1007/978-3-642-54833-8_15.

4. C. Bach Poulsen and P. D. Mosses. Divergence as state in coinductive big-step
semantics (extended abstract). In 26th Nordic Workshop on Programming Theory,
NWPT ’14, 2014. URL: http://www.plancomps.org/nwpt2014/.

5. S. Berghofer, L. Bulwahn, and F. Haftmann. Turning inductive into equa-
tional specifications. In Theorem Proving in Higher Order Logics, 22nd Inter-
national Conference, TPHOLs 2009. Proceedings, pages 131–146, 2009. doi:

10.1007/978-3-642-03359-9_11.

6. S. Blazy and X. Leroy. Mechanized semantics for the Clight subset of
the C language. J. Autom. Reasoning, 43(3):263–288, 2009. doi:10.1007/

s10817-009-9148-3.

7. M. Bodin, A. Charguéraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene,
A. Schmitt, and G. Smith. A trusted mechanised JavaScript specification. In The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, pages 87–100, 2014. doi:10.1145/2535838.2535876.

8. R. Boyer and J. S. Moore. Mechanized formal reasoning about programs and
computing machines. In Automated Reasoning and Its Applications: Essays in
Honor of Larry Wos. MIT Press, 1996.

9. P. Chambart. High level OCaml optimisations. https://ocaml.org/meetings/

ocaml/2013/slides/chambart.pdf, 2013.

10. A. Charguéraud. Pretty-big-step semantics. In Programming Languages and Sys-
tems - 22nd European Symposium on Programming, ESOP 2013. Proceedings,
pages 41–60, 2013. doi:10.1007/978-3-642-37036-6_3.

11. N. A. Danielsson. Operational semantics using the partiality monad. In ACM
SIGPLAN International Conference on Functional Programming, ICFP’12, pages
127–138, 2012. doi:10.1145/2364527.2364546.

12. D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and control
effects on local relational reasoning. J. Funct. Program., 22(4-5):477–528, 2012.
doi:10.1017/S095679681200024X.

13. C. Ellison and G. Rosu. An executable formal semantics of C with appli-
cations. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2012, pages 533–544, 2012. doi:

10.1145/2103656.2103719.

14. C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt, J. A.
McCarthy, J. Rafkind, S. Tobin-Hochstadt, and R. B. Findler. Run your research:
on the effectiveness of lightweight mechanization. In Proceedings of the 39th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2012, pages 285–296, 2012. doi:10.1145/2103656.2103691.

http://dx.doi.org/10.1007/11693024_6
http://dx.doi.org/10.1145/504709.504712
http://dx.doi.org/10.1007/978-3-642-54833-8_15
http://www.plancomps.org/nwpt2014/
http://dx.doi.org/10.1007/978-3-642-03359-9_11
http://dx.doi.org/10.1007/978-3-642-03359-9_11
http://dx.doi.org/10.1007/s10817-009-9148-3
http://dx.doi.org/10.1007/s10817-009-9148-3
http://dx.doi.org/10.1145/2535838.2535876
https://ocaml.org/meetings/ocaml/2013/slides/chambart.pdf
https://ocaml.org/meetings/ocaml/2013/slides/chambart.pdf
http://dx.doi.org/10.1007/978-3-642-37036-6_3
http://dx.doi.org/10.1145/2364527.2364546
http://dx.doi.org/10.1017/S095679681200024X
http://dx.doi.org/10.1145/2103656.2103719
http://dx.doi.org/10.1145/2103656.2103719
http://dx.doi.org/10.1145/2103656.2103691

15. R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. CakeML: A verified imple-
mentation of ML. In POPL ’14: Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 179–191. ACM Press,
2014. doi:10.1145/2535838.2535841.

16. X. Leroy. Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2006, pages 42–54, 2006.
doi:10.1145/1111037.1111042.

17. X. Leroy. A formally verified compiler back-end. Journal of Automated Reasoning,
43(4):363–446, 2009. doi:10.1007/s10817-009-9155-4.

18. X. Leroy and H. Grall. Coinductive big-step operational semantics. Inf. Comput.,
207(2):284–304, 2009. doi:10.1016/j.ic.2007.12.004.

19. J. S. Moore. Symbolic simulation: An ACL2 approach. In Formal Methods in
Computer-Aided Design, Second International Conference, FMCAD ’98. Proceed-
ings, pages 334–350, 1998. doi:10.1007/3-540-49519-3_22.

20. K. Nakata and T. Uustalu. Trace-based coinductive operational semantics
for While. In Theorem Proving in Higher Order Logics, 22nd International
Conference, TPHOLs 2009. Proceedings, pages 375–390, 2009. doi:10.1007/

978-3-642-03359-9_26.
21. T. Nipkow and G. Klein. Concrete Semantics - With Isabelle/HOL. Springer,

2014. doi:10.1007/978-3-319-10542-0.
22. S. Owens. A sound semantics for OCaml light. In Programming Languages and

Systems: 17th European Symposium on Programming, ESOP 2008. Proceedings,
pages 1–15, 2008. doi:10.1007/978-3-540-78739-6_1.

23. J. C. Reynolds. Definitional interpreters for higher-order programming languages.
Higher-order and Symbolic Computation, 11(4):363–397, 1998. doi:10.1023/A:

1010027404223.
24. T. Rompf and N. Amin. From F to DOT: type soundness proofs with definitional

interpreters. CoRR, abs/1510.05216, 2015. URL: http://arxiv.org/abs/1510.
05216.

25. J. Siek. Big-step, diverging or stuck? http://siek.blogspot.com/2012/07/

big-step-diverging-or-stuck.html, 2012.
26. J. Siek. Type safety in three easy lemmas. http://siek.blogspot.com/2013/05/

type-safety-in-three-easy-lemmas.html, 2013.
27. M. Tofte. Type inference for polymorphic references. Inf. Comput., 89(1):1–34,

1990. doi:10.1016/0890-5401(90)90018-D.
28. P. Tollitte, D. Delahaye, and C. Dubois. Producing certified functional code

from inductive specifications. In Certified Programs and Proofs - Second Inter-
national Conference, CPP 2012. Proceedings, pages 76–91, 2012. doi:10.1007/

978-3-642-35308-6_9.
29. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf.

Comput., 115(1):38–94, 1994. doi:10.1006/inco.1994.1093.
30. W. D. Young. A mechanically verified code generator. J. Autom. Reasoning,

5(4):493–518, 1989. doi:10.1007/BF00243134.

http://dx.doi.org/10.1145/2535838.2535841
http://dx.doi.org/10.1145/1111037.1111042
http://dx.doi.org/10.1007/s10817-009-9155-4
http://dx.doi.org/10.1016/j.ic.2007.12.004
http://dx.doi.org/10.1007/3-540-49519-3_22
http://dx.doi.org/10.1007/978-3-642-03359-9_26
http://dx.doi.org/10.1007/978-3-642-03359-9_26
http://dx.doi.org/10.1007/978-3-319-10542-0
http://dx.doi.org/10.1007/978-3-540-78739-6_1
http://dx.doi.org/10.1023/A:1010027404223
http://dx.doi.org/10.1023/A:1010027404223
http://arxiv.org/abs/1510.05216
http://arxiv.org/abs/1510.05216
http://siek.blogspot.com/2012/07/big-step-diverging-or-stuck.html
http://siek.blogspot.com/2012/07/big-step-diverging-or-stuck.html
http://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html
http://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html
http://dx.doi.org/10.1016/0890-5401(90)90018-D
http://dx.doi.org/10.1007/978-3-642-35308-6_9
http://dx.doi.org/10.1007/978-3-642-35308-6_9
http://dx.doi.org/10.1006/inco.1994.1093
http://dx.doi.org/10.1007/BF00243134

	Functional Big-step Semantics

