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Abstract. Inlining is a crucial optimisation when compiling functional
programming languages. This paper describes how we have implemented
and verified function inlining and loop specialisation for PureCake, a
verified compiler for a Haskell-like (purely functional, lazy) programming
language. A novel aspect of our formalisation is that we justify inlining by
pushing and pulling let-bindings. All of our work has been mechanised
in the HOL4 interactive theorem prover.
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1 Introduction

It can be tricky to generate high-quality code from lazy, purely functional pro-
grams for a number of reasons. One of these reasons is that functional program-
ming encourages a brief declarative style that makes heavy use of shorthands
(e.g., for partially-applied functions) and higher-order functions [8]. Producing
good code from such input requires a well-developed inliner, as noted [17] by the
developers of the Glasgow Haskell Compiler (GHC):

“One of the trickiest aspects of a compiler for a functional language is
the handling of inlining. [...] Effective inlining is particularly crucial in
getting good performance.”

This paper is about implementing and verifying an inliner that can specialise
loops for PureCake, an end-to-end verified compiler for a Haskell-like language [10].

The inliner by example. The following simple example demonstrates what
our inliner does. Imagine that a programmer is to write a function that incre-
ments every element of a list of integers. The programmer should write:

suc_list = map (+1)

Here, the programmer has relied on the library function map below to perform
the necessary list traversal.
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map f [] = []
map f (x:xs) = f x : map f xs

To generate high-quality code for suc_list, the compiler must both inline and
specialise map. Our inliner takes the definition of suc_list above and produces
the following code.

suc_list =
let map' xs =

case xs of
[] -> []
(y:ys) -> y + 1 : map' ys

in map'

In particular, the inliner has combined the following code transformations:

– selective expansion of function definitions at call sites; and
– loop specialisation of recursive functions with known arguments (e.g., argu-

ment f to map is always (+1) in suc_list).

Contributions. Our work adds verified inlining and loop specialisation to Pure-
Cake. Our inliner is capable of optimisations such as the one above. More specif-
ically, we make the following contributions:

1. We define and prove sound a relation that encapsulates an envelope of
semantics-preserving inlinings (§ 4). This relation is independent of the
heuristics of any real implementation. It is proved sound using a novel for-
malisation of inlining as pushing/pulling of let-bindings.

2. We derive sound equational principles that allow us to lift out arguments
which remain constant during recursion, such as f in map in the example
above (§ 5). These principles are phrased such that they can be used in the
relation above and have the effect of specialising loops.

3. We implement an inliner that can specialise loops and verify that its action
preserves semantics, relying on the formalisations above (§ 6).

4. We integrate our inliner into the PureCake compiler and its verification (§ 7).

All of our work is mechanised using the HOL4 interactive theorem prover, and
our development is open-source.3 To the best of our knowledge, ours is the first
verified inliner for a lazy functional programming language, and the first verified
loop specialiser for any functional language.

2 The Inliner by Example

We begin with a high-level explanation of how our inliner works, before diving
into verification details in later sections. We will show the transformations the
3 https://github.com/cakeml/pure, see also our artifact hosted on Zenodo [9].

https://github.com/cakeml/pure
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inliner performs step-by-step. As a running example, we use the code from the
previous section with one modification: we lift (+1) to a separate function add1
for clarity. The input code after this modification is as follows:

suc_list = map add1

add1 i = i + 1

map f [] = []
map f (x:xs) = f x : map f xs

main = ...

Our inliner is installed very early in the PureCake compiler, directly after
parsing and binding group analysis. Binding group analysis processes the pro-
gram above to the code below, breaking up the mutually recursive bindings into
a nesting of let-expressions. Note that there is no dependency between add1 and
map, so their definitions could be reordered; for this example we put add1 first.

18 let add1 i = i + 1 in
19 let map f l = case l of
20 [] -> []
21 (x:xs) -> f x : map f xs in
22 let suc_list = map add1 in
23 let main = ... in main

The inliner receives this program as input. As it traverses the program, it
records known definitions that it may wish to inline later on. In particular, it
maintains a mapping from names to their definitions, which starts off empty.
Therefore, after processing line 18 (i.e., the definition of add1), the mapping
contains only the definition of add1, that is, \i -> i + 1.

The inliner then moves to line 19, the let-expression that defines map. The
definition of map is recursive, so the inliner analyses it to determine whether any
of its arguments remain constant over all recursive calls. In the case of map, it
finds that the first argument, f, remains constant. This means that it can loop
specialise map to produce the following equivalent definition.

let map f =
let map' l = case l of

[] -> []
(x:xs) -> f x : map' xs

in map'
in ...

Our inliner does not alter the definition of map in the program, but it does add
this equivalent definition to its mapping of known definitions. We will very soon
see why it is useful to pull out the constant argument f.
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The inliner moves on to the definition of suc_list on line 22.

let suc_list = map add1 in ...

After pulling out the constant argument f above, the inliner considers map to
be a single-argument function. Therefore, the application map add1 here seems
fully applied and the inliner will rewrite it. First, it transforms map add1 into
the following.

let suc_list =
let f = add1 in
let map' l = case l of

[] -> []
(x:xs) -> f x : map' xs

in map'
in ...

Notice the use of a binding let f = add1 to assign the constant argument f of
map. Then, the inliner recurses into this expression, replacing f by add1 in the
second row of the pattern match:

(x:xs) -> add1 x : map' xs

The inliner recurses again into the modified subexpression add1 x, and realises
that add1 (which is mapped to \i -> i + 1) is fully applied. Therefore, it inlines
add1 too:

(x:xs) -> (let i = x in i + 1) : map' xs

Once again, the inliner recurses on the modified subexpression, turning the in-
nermost i into x:

(x:xs) -> (let i = x in x + 1) : map' xs

The final code produced by the inliner is below. The definition of suc_list
has been rewritten so extensively that it now resembles a copy of map which has
been specialised to the add1 function.

41 let add1 i = i + 1 in
42 let map f l = case l of
43 [] -> []
44 (x:xs) -> f x : map f xs in
45 let suc_list =
46 let f = add1 in
47 let map' l = case l of
48 [] -> []
49 (x:xs) -> (let i = x in x + 1) : map' xs
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50 in map'
51 in let main = ... in main

Some dead code remains, e.g., let f = add1 (line 46) and let i = x (line 49).
We perform a simple dead code elimination pass immediately after the inliner
to remove these.

Single-pass optimisation. Note that our inliner does not make multiple passes
over input code, in contrast to the presentation above. It performs a single top-
down pass over its input, calling itself recursively only on function applications
or variables that it has successfully rewritten. The depth of this recursion is
bounded by a simple user-configurable recursion limit.

3 Setting: PureCake

We implement and verify our inlining and specialisation optimisations as part of
the verified compiler PureCake. In this section, we describe both the PureCake
project at a high level, and the key aspects of its formalisation on which we rely.

What is PureCake? PureCake [10] is an end-to-end verified compiler for a
Haskell-like language known as PureLang. Here, a “Haskell-like” language is
one which: is purely functional with monadic effects; evaluates lazily; and has a
syntax resembling that of Haskell. PureCake compiles PureLang to the CakeML
language, which is call-by-value and ML-like, and has an end-to-end verified com-
piler [12,14]. CakeML targets machine code, so PureCake and CakeML can be
composed to produce end-to-end guarantees for the compilation of PureLang
to machine code [10, §6].

The PureCake compiler is designed to be realistic: it accepts a featureful
input language and generates performant code. This makes it an ideal setting
for verified inlining and specialisation optimisations. We add these to PureCake
as PureLang-to-PureLang transformations.

Formalisation details. PureLang is formalised using two ASTs: compiler ex-
pressions and semantic expressions, denoted ce and e respectively [10, §3.2].
The compiler implementation uses compiler expressions, and their semantics is
given by desugaring into semantic expressions (denoted desugar, of type ce → e).

The call-by-name operational semantics of PureLang is defined over its sim-
pler semantic expressions [10, §3.3]. This semantics admits an equational the-
ory [10, §3.4] which is sound and complete with respect to contextual equiv-
alence. Its equivalence relation, e1 ∼= e2, is based on an untyped applicative
bisimulation from Abramsky’s lazy λ-calculus [1] and is proved congruent via
Howe’s method [7], i.e., expressions composed of equivalent subexpressions are
themselves equivalent.

PureCake’s compiler passes are verified in two stages.
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1. A binary syntactic relation is defined over semantic expressions (e1 R e2).
The relation is proved to imply e1 ∼= e2, so e1 and e2 have identical observ-
able behaviour in all contexts. Intuitively, the syntactic relation carves out
an envelope of possible valid transformations, independent of the heuristics
of any real implementation.

2. The implementation is then defined over compiler expressions, with concrete
heuristics. It is verified to perform only those valid transformations expressed
by the syntactic relation.

Composition of the two stages produces the overall proof that the action of the
compiler implementation preserves semantics. A key benefit of this approach is
that heuristics remain an implementation detail in stage 2, and can be changed
without incurring the significant proof obligations of stage 1.

Approach and paper outline. We can now describe more precisely the steps we
took to add inlining and loop specialisation to the PureCake compiler.

§ 4 (stage 1) We defined a relation which captures an envelope of valid inlining
transformations, and proved that this relation preserves semantics.

§ 5 We formalised loop specialisation using PureLang’s equational theory such
that it can be used in the envelope mentioned above.

§ 6 (stage 2) We implemented the overall inlining and specialisation transfor-
mations over compiler expressions, verifying that they fit the envelopes.

§ 7 We integrated our inliner into the PureCake compiler pipeline and its top-
level correctness result.

§ 8 We benchmarked the performance of the output of the inliner.

4 Inlining as a Relational Envelope

In this section, we define a relation which characterises all the inlinings that we
wish to perform. We then prove that any code transformation contained within
this relational envelope must preserve semantics.

4.1 Understanding the relation

We begin by describing the intuition behind our relation.

Inlining is not substitution. Inlining is a more complex transformation than
substitution or β-conversion. If we were to view inlining as a special case of
these, we would generate unsatisfactory code. In particular, consider the example
below: inlining based on substitution must replace all three occurrences of f with
its definition; inlining based on β-conversion would remove the let-binding.

let f i = 5 in f 1 : map f xs ++ map f ys
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By contrast, a real inliner must be able to choose whether to inline a definition
per use of that definition. In other words, the inliner should decide which usages
of a given definition are rewritten on a case-by-case basis. For the example above,
a real inliner should produce the code below. Note that it chooses to inline the
function f only at the usage which fully applies it.

let f i = 5 in (\i -> 5) 1 : map f xs ++ map f ys

Of course, a real inliner would further transform (\i -> 5) 1 into 5 (this is in
fact a β-conversion). For clarity in this example, we do not show that step.

Inlining is a series of let transformations. The key intuition behind our
inlining transformations is as follows. We push let-bindings into expressions as
far as possible, rewrite the result, then pull the bindings out again. We illustrate
this by example below, starting from the same initial code as above.

let f i = 5 in f 1 : map f xs ++ map f ys

We now push in the let-binding which defines f to produce a series of equivalent
expressions. First, we push it in one step past the list constructor (:):

(let f i = 5 in f 1) :
(let f i = 5 in map f xs ++ map f ys)

Next, we push it in through the function application f 1:

(let f i = 5 in f) (let f i = 5 in 1) :
(let f i = 5 in map f xs ++ map f ys)

Now, we choose to rewrite the use of f under the first let f i = 5 to \i -> 5:

(let f i = 5 in (\i -> 5)) (let f i = 5 in 1) :
(let f i = 5 in map f xs ++ map f ys)

Note that we have chosen not to perform any other rewrites of f, because other
uses of f are not fully applied.

We can now reverse the pushing in of let-bindings, i.e., we pull them out
instead. The final result is as follows, where f is inlined exactly as we wanted:

let f i = 5 in (\i -> 5) 1 : map f xs ++ map f ys

Stacking let transformations. Above, our example shows how we can inline
a single let-binding: we push it inwards, use it for rewriting, and pull it outwards
back to its original position. We can generalise this straightforwardly to handle
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a list of let-bindings. This mimics the implementation of a real inliner, which
must carry with it a collection of definitions it may wish to inline.

Consider the following example, in which an inliner attempts to rewrite the
expression g 3 + 7 and carries definitions f i = 5; h i = 2; g i = f i + 1.

let f i = 5 in
let h i = 2 in
let g i = f i + 1 in

g 3 + 7

Just as with a single let-binding, we can push in the stack of let-bindings,
rewrite, and pull them out again. This produces the following expression.

let f i = 5 in
let h i = 2 in
let g i = f i + 1 in

(\i -> (\i -> 5) i + 1) 3 + 7

The only complication in generalising to a stack of let-bindings is that some
definitions can depend on others. In the example above, the definition of g
depends on f. This is why we model the bindings as a list : this preserves scoping
correctly, ensuring we do not break any dependencies between definitions.

Note that this intuition of pushing in and pulling out of let-bindings applies
only to the formalisation that justifies our inlining rewrites. The implementation
of our inliner performs no such push/pull transformations: as one might expect,
it merely carries around a simple (unordered) map of variable names to their
definitions. This map represents exactly the set of definitions that the inliner
may wish to use for rewriting at usage sites.

4.2 Defining a Semantics-Preserving Envelope

We now describe an inductive relation, l ⊩ e1 ⇝ e2, which characterises all of
the inlining transformations that we perform. We prove that any transformation
described by the relation lies within the equational theory of PureLang (∼=, § 3).
Therefore, the relation describes only semantics-preserving transformations.

The relation l ⊩ e1 ⇝ e2 should be read as follows: expression e1 can be
transformed into expression e2 under the definitions in the list l. Both e1 and
e2 are PureLang semantic expressions, and l is a list of definitions. Each such
definition is of the form x ← e, associating name x with semantic expression
e. We will first describe the formal meaning of l ⊩ e1 ⇝ e2, which is best
understood via its soundness theorem, Theorem 1. Then in following subsections,
we describe key parts of the definition of ⇝.

Theorem 1 relates derivations of l ⊩ e1 ⇝ e2 with ∼=, PureLang’s equational
theory, assuming pre and lets_ok. The definitions of pre and lets_ok are shown in
Figure 1—they enforce distinct variable names between both the expression e1
and each of the definitions in l to avoid inadvertent clashes or capture.
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vars_of l def
=

⋃{
{x} ∪ freevars e

∣∣∣ mem (x ← e) l
}

pre l e
def
= barendregt e ∧ boundvars e # vars_of l

lets_ok []
def
= T

lets_ok ((x ← e) :: l)
def
=

x /∈ freevars e ∧
(
{x} ∪ freevars e

)
# {x | ∃e. mem (x ← e) l} ∧ lets_ok l

Fig. 1. The definition of pre and lets_ok. Here, the # predicate returns true only for
disjoint sets: s1#s2

def
= (s1 ∩ s2 = ∅).

Theorem 1. Soundness of l ⊩ e1 ⇝ e2.

⊢ l ⊩ e1 ⇝ e2 ∧ pre l e1 ∧ lets_ok l ⇒ lets l e1 ∼= lets l e2

where lets [] e
def
= e and lets ((x ← e ′) :: l) e

def
= let x = e ′ in (lets l e)

In particular, expressions e1 and e2 related in the context of definitions l produce
equal expressions (according to ∼=) under the stack of let-bindings corresponding
to l. The latter correspondence is encapsulated by the definition of lets, which
nests let-bindings. This theorem is proved by induction over the derivation of
l ⊩ e1 ⇝ e2. In upcoming subsections, we will examine key rules of ⇝ and their
cases in this inductive proof.

When the inliner is first invoked, it is passed an entire PureLang program
and has no knowledge of any definitions. In other words, its mapping of variable
names to known definitions is empty, corresponding to the list l being empty ([]).
In this case, we can simplify Theorem 1 by instantiating l 7→ [], and unfolding
the definitions of pre l and lets_ok l. This produces the following theorem:

Theorem 2. Soundness of [] ⊩ e1 ⇝ e2.

⊢ [] ⊩ e1 ⇝ e2 ∧ barendregt e1 ∧ closed e1 ⇒ e1 ∼= e2

We can read this as follows: if we can transform some closed e1 which satis-
fies barendregt to some e2 according to ⇝, then e1 and e2 are equivalent. The
barendregt predicate restricts the variable naming convention within e1 to avoid
problems with variable capture, because PureLang has explicit names. In par-
ticular, barendregt is the well known Barendregt variable convention that enforces
unique free/bound variable names across an entire program [3].

The precise definition of barendregt is not necessary here. Suffice it to say
that in order to discharge this assumption, our inliner implementation will rely
on a freshening pass. This pass α-renames programs such that they obey the
Barendregt variable convention, and therefore satisfy barendregt.
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Reflexivity. We must allow the inliner to choose whether to rewrite a usage
site on a case-by-case basis (§ 4.1). Therefore, the inliner must be allowed not
to inline, i.e., it must be able to leave an expression unchanged. Therefore the
⇝ relation has a reflexivity rule:

l ⊩ e ⇝ e
refl

The refl case of the proof of Theorem 1 boils down to showing the equation
lets l e ∼= lets l e, which is trivial due to reflexivity of ∼=.

Inlining. The simplest rule for inlining uses a definition found in the list l
(where mem denotes list membership) to rewrite a variable:

mem (x ← e) l

l ⊩ var x ⇝ e
inline

In particular, if l associates name x with definition e, then the variable var x can
be replaced by expression e. The inline case of Theorem 1 requires establishing:

⊢ mem (x ← e) l ∧ lets_ok l ∧ pre l (var x )⇒ lets l (var x ) ∼= lets l e

Proof outline. We first derive a lemma that allows us to duplicate a let-binding
from l, assuming lets_ok (defined in Figure 1 such that it enables this lemma):

⊢ mem (x ← e) l ∧ lets_ok l ⇒ lets l e ′ ∼= lets l (let x = e in e ′) Let-dup

Equipped with the Let-dup lemma, we proceed as follows:

lets l (var x ) ∼= lets l (let x = e in var x ) (Let-dup)
∼= lets l e (trivial)

⊓⊔

Let. We can now inline known definitions, but we must be able to learn those
definitions in the first place. The rule Let allows us to add a let-bound definition
to the stack l, using the append operator (++).

l ⊩ e1 ⇝ e ′1 l ++ (x ← e1) ⊩ e2 ⇝ e ′2

l ⊩ (let x = e1 in e2)⇝ (let x = e ′1 in e ′2)
Let

Proof outline. Let case of Theorem 1.

lets l (let x = e1 in e2)
∼= lets (l ++ (x ← e1)) e2 (definition of lets)
∼= lets (l ++ (x ← e1)) e

′
2 (ih for e2)

∼= lets l (let x = e1 in e ′2) (definition of lets)
∼= let x = (lets l e1) in (lets l e ′2) (push in lets)
∼= let x = (lets l e ′1) in (lets l e ′2) (ih for e1)
∼= lets l (let x = e ′1 in e ′2) (pull out lets)
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⊓⊔
Above, we can push and pull lets through let because the precondition pre
enforces sufficiently distinct variable names.

Note that this rule records the unmodified expression e1 in the stack of known
definitions l. It could instead use the ⇝-transformed expression e ′1. The proof
strategy with this modification is essentially unchanged, except we must reverse
our applications of the inductive hypotheses.

Congruences. We must be able to apply ⇝ within subexpressions. Therefore,
we have several congruence rules, such as the following:

l ⊩ e1 ⇝ e ′1 l ⊩ e2 ⇝ e ′2

l ⊩ (e1 · e2)⇝ (e ′1 · e ′2)
App-cong

l ⊩ e ⇝ e ′

l ⊩ (λx . e)⇝ (λx . e ′)
Lam-cong

∀i. l ⊩ ei ⇝ e ′i l ⊩ e ⇝ e ′

l ⊩ (letrec xn = en in e)⇝
(
letrec xn = e ′n in e ′

) Letrec-cong

Each such case in Theorem 1 requires showing that we can push/pull lets
into/out of subexpressions. Once again, the precondition pre permits this by
enforcing sufficiently distinct variable names. The remainder of the proof follows
from congruence of ∼=.

Simplification. The following rule allows ⇝ to carry out any transformation
that preserves ∼=:

l ⊩ e1 ⇝ e2 e2 ∼= e ′2

l ⊩ e1 ⇝ e ′2
simp

The simp case in Theorem 1 is a direct consequence of the transitivity of ∼=.
This rule permits the inliner to modify (and in particular, simplify) generated

expressions during its operation. There are two important uses of this ability:

– Turning fully applied λ-abstractions into a stack of let-bindings. This allows
recursive applications of inlining (see rule trans below).

(λx1. λx2. . . . λxn. e) · e1 · e2 · . . . · en ∼=
lets (x1 ← e1 :: x2 ← e2 :: . . . :: xn ← en) e (1)

– Freshening names of bound variables (i.e., α-renaming). This happens di-
rectly before application of the rule trans below.

Transitivity. To permit recursion into recently inlined expressions, ⇝ has a
transitivity rule:

l ⊩ e1 ⇝ e2 l ⊩ e2 ⇝ e3 pre l e2

l ⊩ e1 ⇝ e3
trans
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In particular, e1 can be transformed to e3 if there is some intervening e2 which
can act as a stepping stone.

Unusually, we require precondition pre to hold of intermediate expression e2.
This is demanded by the proof of Theorem 1, in which we can only instanti-
ate inductive hypotheses if we first establish pre. Unfortunately, l ⊩ e1 ⇝ e2
and pre l e1 are not enough to derive pre l e2. Fortunately, we can freshen
bound variable names (i.e., α-rename) sufficiently to establish pre, and justify
this freshening using rule simp above.

Specialisation. The⇝ relation must be able to support loop specialisation, as
described for the map function in § 2. Therefore, it has a rule spec which permits
conversion of a letrec into a let, as long as there is a proof that the conversion
preserves ∼=.

l ⊩ e1 ⇝ e ′1 (∀e. letrec x = e1 in e ∼= let x = e2 in e)

l ++ (x ← e2) ⊩ e3 ⇝ e ′3 disjoint_names e2 e3 x /∈ freevars e2

l ⊩ letrec x = e1 in e3 ⇝ letrec x = e ′1 in e ′3
spec

That is, if we can ∼=-convert some letrec x = e1 to some let x = e2, then we can
append x ← e2 to the stack of known definitions when processing letrec body
e3. Again, we require restrictions on variable naming: the variables bound in e2
and e3 must be disjoint, and the bound variable x must not appear free in e2.

Proof outline. spec case of Theorem 1.

lets l (letrec x = e1 in e3)
∼= lets l (let x = e2 in e3) (assumption of rule)
∼= lets (l ++ (x ← e2)) e3 (definition of lets)
∼= lets (l ++ (x ← e2)) e

′
3 (ih for e3)

∼= lets l (let x = e2 in e ′3) (definition of lets)
∼= lets l (letrec x = e1 in e ′3) (ass. of rule, symmetry of ∼=)
∼= letrec x = (lets l e1) in lets l e ′3 (push lets)
∼= letrec x = (lets l e ′1) in lets l e ′3 (ih for e1)
∼= lets l (letrec x = e ′1 in e ′3) (pull out lets)

⊓⊔

5 Specialisation of Recursive Bindings

Our example in § 2 showed that our inliner can specialise applications of recur-
sive functions such as map to known arguments such as add1. This is possible
whenever constant arguments such as f can be pulled out of the recursion. That
is, whenever we can transform recursive functions like map (left) into equivalent
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code which makes the constant argument explicit using map' (right):

let map f l =
case l of

[] -> []
(x:xs) -> f x : map f xs

let map f = let map' l =
case l of

[] -> []
(x:xs) -> f x : map' xs

in map'

In this section, we describe how we prove correctness of such transformations.
Critically, our proofs can be used in the spec rule of⇝ from the previous section.

5.1 Understanding Specialisation

Like⇝, our specialisation transformation is justified using equational reasoning.
We illustrate the equational steps below, again noting that the implementation
is much more direct. We use the map example of § 1, eliding parts not relevant
to specialisation. The input is therefore as follows:

let map f l = ... f x ... map f xs ...

We first make a local copy of the recursive definition map, named map':

let map = let map' f l = ... f x ... map' f xs ...
in map'

We then η-expand the final usage of the copy map':

let map = let map' f l = ... f x ... map' f xs ...
in \f l -> map' f l

Next, we pull out the new λ-abstractions to the top-level:

let map f l = let map' f l = ... f x ... map' f xs ...
in map' f l

We then α-rename the constant argument in the copy (here, f becomes g):

let map f l = let map' g l = ... g x ... map' g xs ...
in map' f l

The first major step (transform 1 ) replaces the constant argument g with the
known value to which the function map’ is always applied, f:

let map f l = let map' g l = ... f x ... map' f xs ...
in map' f l

The second major step (transform 2 ) deletes the now unused argument g. It
removes the argument from both the definition of map' and all calls to map':
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let map f l = let map' l = ... f x ... map' xs ...
in map' l

We push back in some of the top-level λ-abstractions, in this case just l:

let map f = let map' l = ... f x ... map' xs ...
in \l -> map' l

Finally, η-contraction removes the λ-abstraction over l:

let map f = let map' l = ... f x ... map' xs ...
in map'

Most of the steps are straightforwardly justified in PureLang’s equational the-
ory. However, the steps marked transform 1 and transform 2 are more involved.
We discuss these below.

5.2 Key Lemmas for Specialisation

Both transform 1 and transform 2 require a substitution-like traversal of the
entire subexpression under consideration. It is not clear how to justify these
traversals using simple equational reasoning in PureLang’s theory. Therefore,
we resort to more cumbersome simulation proofs to establish ∼= by appealing to
its definition in terms of PureLang’s operational semantics.

For transform 1, we prove a theorem of the following form. Here call_with_arg
holds only if every application of f in e is applied to var y after n arguments,
and the names f and y are never rebound within e.

⊢ call_with_arg f xn y e ∧ . . .

⇒ letrec f = (λ xn . λy . e) in ((var f) · e1n · (varw) · e2m)
∼= letrec f = (λ xn . λy . e[varw/y]) in ((var f) · e1n · (varw) · e2m)

Though the variable w is free in the theorem above, it is a closed constant
expression in most parts of the proof, which simplifies the derivation of this theo-
rem. This is because ∼= is defined over open terms in terms of closing substitution
and a relation over closed terms. The proof of this theorem is a large simulation
based on the semantics of PureLang.

For transform 2, we prove a theorem with a similar shape. This time, remove_-
call_arg is an inductive relation that ensures y never appears in e1 and relates
e1 to a second expression e2 in which the relevant argument has been removed
from each application of f .

⊢ remove_call_arg f xn y zm e1 e2 ∧ . . .

⇒ letrec f = (λ xn . λy . λ zm . e1) in ((var f) · e3n · (var y) · e4m)
∼= letrec f = (λ xn . λ zm . e2) in ((var f) · e3n · e4m)

We prove this theorem by a large simulation too. The simulation strategy is
necessary because letrec causes (potentially non-terminating) recursion.
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6 Implementing a Correct Inliner

In this section, we describe the implementation of our inliner and the proof that
its action lies within the ⇝ relation described in § 4. We also touch on three
other transformations mentioned previously: specialisation, freshening of bound
variables, and dead code elimination. Our inliner relies on all three.

6.1 Preliminaries

We implement our inliner within a state monad with the following type:

α M
def
= name set→ (α, name set)

Here, name set is a set of variable names; we will see its usage shortly. This monad
has standard return/bind operators, and we will use Haskell-style do-notation to
show definitions written within the monad.

The inliner itself has the following signature:

inline : (h : heuristic)→ (k : num)→ (m : (name 7→ ce))→ ce → ce M

In other words, the inliner transforms compiler expressions to compiler expres-
sions within the state monad, requiring several other inputs:

– An unordered mapping m from names to expressions. This is the “memory”
of the inliner: the set of known definitions which it can use for rewriting.

– Heuristic h decides whether to “remember” a definition for future inlining. It
accepts an expression ce and returns a boolean: if true, the definition should
be remembered.

– Natural number k is the recursion limit for the inliner, used to bound its
recursion into rewritten expressions.

– The name set parameter hidden within the monad keeps track of all variable
names (whether bound or free) in input expression ce. It is used to ensure
that sufficiently fresh variable names are chosen when freshening the names
of bound variables.

6.2 Inliner implementation

The inliner traverses compiler expressions top-down. During the traversal, it
performs two key operations: rewriting a variable to a known definition from
memory, and adding a new definition to memory.

Rewriting a variable. There are two kinds of expressions in which the inliner
will attempt to rewrite a variable. The first is a lone variable (of the form var x ),
and the second is an application of a variable to some arguments (of the form
(var x ) · . . .). The latter case is used to inline fully applied functions only.
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In the lone variable case, the inliner is defined as follows:

inlinekh m (var x )
def
=

return (var x )
x /∈ domain m ∨ k = 0 ∨
m(x) = λy . . . .

inlinek−1
h m ce m(x) = ce

That is, on encountering a free variable x the inliner does one of the following:

– Leaves the variable unchanged if the definition of x is unknown, or the re-
cursion limit has been reached, or the definition of x is known to be a λ-
abstraction. The last case may seem unusual, but note we do not rewrite
variables to λ-abstractions unless the result will be fully applied. This is
handled in the application case below.

– Rewrites the variable by inserting the expression ce found in memory, and
then recurses into ce with a decremented recursion limit.

In the application case, the inliner is defined as follows:

inlinekh m ((var x ) · ce1 · . . . · cen)
def
= do

[ce ′1, . . . , ce
′
n ]← mapM (inlinekh m) [ce1, . . . , cen ];

if x /∈ domain m ∨ k = 0 then return ((var x ) · ce ′1 · . . . · ce ′n) else do

ce ← freshen (m(x) · ce ′1 · . . . · ce ′n);
case convert_to_lets ce of

| None → return ((var x ) · ce ′1 · . . . · ce ′n)
| Some ce ′ → inlinek−1

h m ce ′

(2)

That is, on encountering a free variable x applied to n arguments the inliner
does the following:

1. Recurses into the arguments to produce n new arguments.
2. Searches for variable x in memory and checks the recursion limit. If x is not

found or the recursion limit has been reached, the inliner returns variable x
applied to the n new arguments.

3. Rewrites x using its definition from memory, m(x).
4. Freshens the resulting application of m(x) to the n new arguments.
5. Attempts to convert the freshened application to a series of let-bindings.

This is precisely the conversion shown in eq. (1) (pg. 11). Note that the
conversion fails (returns None) if m(x) is not fully applied, in which case the
inliner bails out of inlining the definition of x.

6. Recurses into the newly produced series of let-bindings with a decremented
recursion limit.

The conversion into let-bindings is critical: it allows the inliner to learn the
definitions of the applied arguments ce ′1, . . . , ce

′
n for future inlining within the

function body of m(x). Note that we only decrement the recursion limit when the
size of the input expression may not have strictly decreased. This happens only
when performing non-structural recursions, which only occur when we recurse
into a definition rewritten from memory.
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Remembering a new definition. The inliner can remember let- or letrec-
bound expressions.
In the let case, it is defined as follows:

inlinekh m (let x = ce1 in ce2)
def
= do

ce ′1 ← inlinekh m ce1;

let m′ = rememberh m (x ← ce1) ;

ce ′2 ← inlinekh m′ ce2;

return (let x = ce ′1 in ce ′2)

rememberh m (x ← ce)
def
= if cheap ce ∧ h ce then m[x 7→ ce] else m

That is, the inliner recurses into ce1 (without decrementing the recursion limit),
before memorising the definition x ← ce1 and recursing into ce2 with the aug-
mented memory. The function remember records the definition only when two
conditions are satisfied: the definition is cheap, and heuristic h returns true.

As the name suggests, cheap is a predicate that determines whether a defini-
tion is cheap to compute, and so will not slow the program down or cause loss
of value sharing when inlined. The definition of cheap is as follows:

cheap (var x ) = cheap (λx . e) = cheap (op[ ])
def
= T cheap _ def

= F

In the letrec case, the inliner must also perform specialisation. Its action is
defined as follows:

inlinekh m (letrec x = ce1 in ce2)
def
= do

ce ′1 ← inlinekh m ce1;

let m′ = remember_rech m (x ← ce1) ;

ce ′2 ← inlinekh m′ ce2;

return (letrec x = ce ′1 in ce ′2)

remember_rech m (x ← ce)
def
=

if ¬ can_specialise (x ← ce) ∨ ¬ h ce then m else

let ([wa1
1 . . . wan

n ], λ ym . ce ′) = extract_const_args (x ← ce)

in [x 7→ specialise x [wa1
1 . . . wan

n ] (λ ym . ce ′)]

This mirrors the let case almost exactly. The key difference is the use of re-
member_rec instead of remember: this does not check cheap, but does attempt
specialisation (and bails out if it fails). We examine specialisation in the upcom-
ing subsection.

Heuristics. So far, we have only implemented one heuristic based on expres-
sion size: the inliner only remembers definitions that are smaller than a user-
configurable bound. Our implementation can accept any heuristic function as an
input, making it straightforward to support new kinds of heuristic.
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Implementing specialisation. Above, specialise transforms a letrec-binding
into a let-binding before adding it to memory. We rely on two helper functions:
can_specialise and extract_const_args.

The test can_specialise simply checks if we are able to specialise a recursive
body. The body must be a λ-abstraction with some constant arguments. Then,
extract_const_args will extract these constant arguments. It accepts a definition
x ← ce, where we know ce is a λ-abstraction of the form λ xn . ce. It splits the
formal parameters xn into x1 . . . xm and xm+1 . . . xn, where m is the minimum
number of arguments that x is invoked with recursively in body ce. It further
annotates the x1 . . . xm with annotations a1 . . . am, which describe whether the
arguments remain constant for each recursive call. In the implementation of inline
above, this has produced the annotated variables wai

i and left the remainder of
the λ-abstraction untouched (λ ym . ce ′).

Then, specialise is defined as follows.

specialise f [wa1
1 . . . wan

n ] ce
def
=

let (xn, ce
′) = specialise_each x [wa1

1 . . . wan
n ] ce in

let (yi, zj) = drop_common_suffix [wa1
1 . . . wan

n ] xn in

λ yi . letrec f = (λ xn . ce ′) in (var f) · (var z1) · . . . · (var zj )

That is, it processes each annotated variable in turn, updating their call sites in
body ce (i.e., performing transform 1 and transform 2 from § 5 simultaneously
using specialise_each), producing a new set of formal parameters xn. It deter-
mines which of these can be η-contracted (the final step in § 5) with a call to
drop_common_suffix, and then returns the new letrec which accepts constant ar-
guments yi at the top-level, and has η-contracted constant arguments zj applied
directly already.

Freshening and Dead-Let Elimination. Our inliner assumes that its input
expression has a variable naming convention which is sufficient to prevent it from
accidentally capturing variables during operation. Therefore, we only give the
inliner expressions which obey the Barendregt variable convention, which asserts
unique bound variable names and disjoint bound/free names [3]. This is achieved
by freshening (α-renaming) bound variables directly before inlining, and further
freshening before recursing into subexpressions taken from the inliner’s memory.
For example, the inliner invokes freshen in eq. (2) (pg. 16) above. This is precisely
why the inliner carries around a name set in its state monad: this set contains
all variable names (whether bound or free) of the input expression. Freshening
avoids names in this set when inventing fresh names, and returns an updated
set each time it runs.

The output of the inliner also contains various unused let-bindings. We
showed such bindings in the example of § 1 (namely, f and i). To remove such
bindings, we run a dead-let elimination pass directly after the inliner.



Verified Inlining and Specialisation for PureCake 19

Including these two auxiliary passes, the top-level definition of the inliner is
as follows:

inlinerkh ce
def
=

let (ce ′, names) = freshen ce (boundvars ce) in

let (cei, _) = inlinekh ∅ ce ′ names in

dead_let cei

(3)

That is, the inliner freshens names, inlines definitions top-down starting with an
empty (∅) memory, then removes dead lets. Note that the top-level definition
expects to receive only closed expressions, which is why it only passes bound
variables (boundvars) to freshen. This respects our invariant that the name set
contains all bound and free variable names, as there are no free variables.

6.3 Inliner correctness

In this section, we prove that the inliner implementation is correct. In the context
of PureCake’s proof strategy as described in § 3:

– (stage 1) Theorem 2 above (pg. 9) proved that ⇝ preserves semantics.
– (stage 2) Theorem 3 below will prove that any transformation performed by

the inliner lies within the ⇝ relation of § 4.

We then compose these results to produce our final soundness theorem: the
output expression of the inliner is equivalent to its corresponding input.

Theorem 3. inline satisfies ⇝.

⊢ inlinekh m ce ns = (ce ′, ns ′) ∧ memory_relns l m ∧
barendregt (desugar ce) ∧ boundvars ce # domain m ∧
freevars ce ∪ boundvars ce ⊆ ns ∧ wf ce

⇒ l ⊩ (desugar ce)⇝ (desugar ce ′)

That is, after desugaring compiler expressions into semantic expressions (desugar,
see § 3), the action of the inliner for input ce, memory m, and name set ns lies
within ⇝ for some stacked lets l when the following hold:

– (memory_rel) m and l contain the same definitions, and each such definition
both satisfies wf below and has bound/free variables within ns;

– (barendregt) bound names in ce are unique, and disjoint from free names;
– the bound variables of ce do not shadow (are disjoint from, #) any variables

with known definitions, i.e., those in the domain of m;
– all bound/free variables of ce are within ns; and
– (wf) ce is well-formed.

Proof outline. Induction over the implementation function inline. For each case
of the proof, we apply rules of ⇝ to justify each atomic inlining operation. ⊓⊔
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Theorem 4. Top-level correctness of inliner.

⊢ wf ce ∧ closed ce ⇒ (desugar ce) ∼=
(
desugar (inlinerkh ce)

)
Proof outline. Composition of Theorem 3 above with Theorem 2 (pg. 9), the
soundness theorem for⇝. Unfolding the definition of inliner, we use the soundness
theorem of freshen, the closed assumption, and the application of inline to empty
memory ∅ to discharge the preconditions on Theorem 3. ⊓⊔

7 Integration into the PureCake Compiler

We insert the inliner and its associated cleanup of dead let-bindings as Pure-
Lang-to-PureLang transformations early in the PureCake compiler. In partic-
ular, directly after parsing and binding group analysis, as shown in Figure 2.
Elimination of dead lets happens directly afterwards.

Unusually, the inliner runs before type inference. Ideally, it would take place
afterwards: it changes program structure significantly, and type inference should
execute on code resembling user input to allow direct error-reporting. The rea-
soning behind this design choice is PureCake’s demand analysis, which facilitates
strictness optimisations by annotating variables that can be evaluated eagerly.
We found that running the inliner before demand analysis produces significantly
better performance (§ 8, Figure 4). However, the soundness proof for demand
analysis requires it to receive only well-typed input code. To run the inliner
after type inference and before demand analysis, we would have to prove that
it preserves well-typing, which is a significant undertaking due to PureLang’s
untyped AST. Future iterations of PureLang’s AST are intended to be typed;
therefore, we could consider proving type preservation in future work.

To update PureCake’s compiler correctness theorem after integrating our in-
liner, we must establish that the inliner preserves both semantics and various
syntactic invariants. We have already presented our proof of semantics preserva-
tion in § 6. The latter syntactic invariants guarantee that compiler expressions
are closed and satisfy well-formedness properties which are checked as part of
parsing. For example, PureLang forbids degenerate function applications to zero
arguments: this can be expressed in the AST for PureLang compiler expressions
but is ill-formed. Establishing preservation of the invariants is mostly mechani-
cal, but quite tedious and long-winded.

8 Benchmarks

In this section we measure the efficacy of our inliner. In particular, we benchmark
code generated by PureCake to determine how much the addition of the inliner
improves runtime and memory overhead.
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Language Compiler implementation

Concrete syntax

PureLang
ce

pure call-by-name
(subst. semantics)

ThunkLang
pure call-by-value
(subst. semantics)

EnvLang
pure call-by-value
(env. semantics)

StateLang
impure call-by-value

(env. semantics)

CakeML source

lex, parse, desugar

binding group analysis; simplify

inline, specialise loops ←− new

remove dead lets ←− new
type inference

simplify

demand analysis

translate to call-by-value;
introduce delay/force;
avoid delay (force (var ))

lift λ-abstractions
out of delays

simplify forces

reformulate to simplify
compilation to StateLang

compile delay/force and
IO monad to stateful ops

push · unit inwards

make every λ-abstraction
bind a variable
translate to CakeML;
attach preamble

front end

back end

Fig. 2. High-level structure of the PureCake compiler. The inliner and its associated
clean up are PureLang-to-PureLang passes which take place immediately after bind-
ing group analysis and before type inference.



22 H. Kanabar et al.

Benchmark
primes collatz life queens qsort suc list

-0.1

0.0

0.1

0.2

0.3
lo

g
2
(s

p
ee

d
u

p
)

primes collatz life queens qsort suc list

-0.1

0.0

0.1

0.2

0.3
lo

g
2
(a

llo
ca

tio
n

red
u

ctio
n

)

±inlining

Fig. 3. Graphs showing the performance impact of our inliner: the base-2 logarithm of
a ratio of measurements (execution time or heap allocations) with/without the inliner
enabled: log2 (mdisabled/menabled). Error bars are too small to be visible.
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Fig. 4. Graphs showing the performance impact of our inliner when executed after
PureCake’s demand analysis. Performance is clearly worse compared to Figure 3; there-
fore we do not pursue this approach.

Methodology. We evaluate the performance of several benchmark programs with
and without the inliner enabled, using an Intel® Xeon® E-2186G and 64 GB
RAM. We consider the same programs as presented by the PureCake developers
in prior work [10, §7.1]. We also add a new suc_list program, which repeatedly
applies the suc_list function shown in § 1 to a list of natural numbers. Like
the PureCake developers, we measure wall-clock runtime and total heap alloca-
tions as reported by the CakeML runtime. Our measurements are facilitated by
existing benchmarking scripts found in the PureCake development.

Results. Figure 3 shows our results, plotted as two bar graphs: the left shows
runtime speedup, the right shows allocation reduction. In many cases, our inliner
significantly improves performance; in all cases it does not worsen performance.
The value for each plot is obtained by taking the base-2 logarithm of a ratio: the
measurement without the inliner enabled (i.e., the longer duration or greater
allocation) divided by the measurement with the inliner enabled. Expressed as
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Table 1. Line counts for each part of our development.

Part of development kLoC

Syntactic relation (⇝) and its soundness (§ 4) 2.6
Equational theory behind specialisation (§ 5) 4.0
Implementation of inliner (incl. specialisation) (§ 6.2) 0.6
Correctness of the implementation (§ 6.3) 3.7
Freshening and its correctness proof 3.1
Elimination of dead lets and its correctness proof 0.5
Total ∼15

a percentage, the most significant improvements are: a ∼20% reduction in the
runtime of life, a ∼15% reduction in the allocations of suc_list.

Inliner placement. We noted in § 7 that our inliner should run before PureCake’s
demand analysis. Here, we justify that design choice. In particular, we benchmark
a version of the PureCake compiler which runs our inliner directly after demand
analysis. The results are shown in Figure 4. The improvements in runtime and
memory overhead are reduced for several benchmarks, and in some cases runtime
even worsens overall. Therefore, our inliner should run before demand analysis
for maximum benefit.

Code size and compile times. Simple measurements of code size show that our
inliner can produce significantly larger CakeML programs (∼50% increase); how-
ever CakeML’s efficient handling of inserted lets reduces the effect for binaries
(< 15% overall increase). Compile times are unaffected: these remain dominated
by PureCake’s type-checking and CakeML’s register allocation.

Line counts. Our work adds to PureCake significantly. Table 1 shows line counts
for each part of our development, measured using wc -l.

9 Related Work

Verified inlining in functional languages. CakeML [12] compiles a subset of Stan-
dard ML (strict, impure) to several mainstream architectures with end-to-end
guarantees. It performs function inlining in its second intermediate language,
ClosLang, which has first-class closures. A flow analysis discovers invocations
of known functions, and simultaneously inlines closed functions which themselves
do not contain closures. Use of de Bruijn indices sidesteps reasoning about shad-
owing and freshening. As in our work, recursive applications of inlining improve
the performance of higher-order functions; we go one step further with speciali-
sation and the inlining of open terms which can contain λ-abstractions.
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CertiCoq [2] verifiably compiles Gallina (the metalanguage of Coq) to C light,
an intermediate language early in CompCert’s pipeline. One of its passes [4]
performs several shrink reductions simultaneously: transformations that only
reduce code size. One such reduction is the inlining of functions which are applied
exactly once; in this case, inlining is β-reduction, contrary to our discussion in
§ 4.1. Restriction to shrink reductions further removes the need for a recursion
limit as code size strictly decreases on each recursive call. Their verification
relies on a more general rewrite system which permits inlining of functions which
are used multiple times. A separate pass [16] further inlines small non-recursive
functions which can be applied multiple times; here a key concern is maintenance
of A-normal form expressions. In all proofs, the Barendregt variable convention
(i.e., barendregt) is used to avoid name clashes.

Pilsner [15] compiles a strict impure language to an idealised assembly, inlin-
ing select top-level functions in its intermediate representation. Recursive func-
tions can be unrolled in this way, but not specialised. Again, the Barendregt
variable convention is enforced. The focus here is on the novel proof technique of
parametric inter-language simulations (PILS) to enable compositional compiler
correctness, where PureCake focuses on mechanised whole-program compiler cor-
rectness for a realistic language.

Other verified inlining passes. CompCert [13] compiles a subset of C99, perform-
ing function inlining in its register transfer language (RTL). This control flow
graph (CFG) representation differs considerably from the functional PureLang;
inlining considers only top-level function declarations in the RTL setting. Rather
than using a recursion limit, CompCert guarantees termination by forbidding in-
lining of functions within their own bodies.

CompCert also performs lazy code motion [19] within RTL. A special case
of this transformation is loop-invariant code motion, which loosely resembles
our specialisation: both are concerned with moving constant expressions out of
loops, but in our functional setting loops are expressed as recursive functions.
Their verification uses translation validation [18]: an unverified tool transforms
code, and then per-run automation proves that semantics has been preserved.

The Plutus Tx language from the Cardano blockchain platform resembles a
subset of Haskell, and is compiled to a custom language known as Plutus Core.
The compiler is implemented as a GHC plugin: GHC machinery first lowers
Plutus Tx to a System F-like language, which is then optimised and compiled
further. The compiler is verified using translation certification [11], which aims
to make translation validation approaches less brittle by combining automated
and manual proof. As in PureCake, syntactic relations are used to encapsu-
late semantics-preserving transformations: automated proof shows that unver-
ified code transformations inhabit the relations, and manual proof shows that
the relations preserve semantics. Translation certification is robust to evolving
compiler implementations because the syntactic proofs are more amenable to
automated verification than the semantic ones. A syntactic relation akin to § 4
justifies inlining; however, semantic verification is ongoing work at the time of
writing. The Barendregt variable convention is enforced in this work too.
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Verified optimisation of realistic Haskell-like languages. The CoreSpec project4
tackles verified variants of Haskell as implemented by GHC. For example, GHC’s
dependent types extensions were proposed using formal specifications of the syn-
tax, semantics, and typing rules of GHC’s Core language [20]. The unverified tool
hs-to-coq [6] translates Haskell code to Gallina (Coq’s metalanguage), lever-
aging Coq’s logic to enable equational reasoning about real-world programs. A
future aim of the project is to derive Coq models of Core automatically from
GHC’s implementation, prove correctness of optimisations within Coq, and in-
tegrate the resulting verified code back into GHC as a plugin. Where CoreSpec
focuses on accurate modelling of GHC with the loss of some trust, PureCake
instead sacrifices faithfulness for end-to-end guarantees.

GHC’s arity analysis pass [5] η-expands functions to avoid excessive thunk
allocations. Its mechanised proof of correctness for a simplified Core language
relies on an explicitly call-by-need semantics to show performance preservation,
i.e., that η-expansion does not reduce value-sharing.

10 Summary and Future Work

This paper has described our work on a verified inlining and loop specialisation
pass for PureLang, a lazy functional programming language. First, we verified
a syntactic relation which defines an envelope of permitted inlining transforma-
tions, independent of heuristic choices. We used a novel phrasing of inlining as
the pushing in and pulling out of let-bindings to prove the relation sound us-
ing PureLang’s equational theory. Our inliner implementation is then proven
to remain within this envelope. We have integrated our work into the Pure-
Cake compiler, an end-to-end verified compiler, and demonstrated significant
performance improvements. To the best of our knowledge, ours is the first ver-
ified function inliner for a lazy functional programming language, and the first
verified loop specialiser for any functional language.

In future work, we intend to support loop unrolling and develop better heuris-
tics that decide when to do inlining. Loop unrolling will probably involve aug-
menting the definition of lets so that it can hold both let expressions and
letrecs. Developing good heuristics will require some careful experimentation
with the compiler implementation. We do not expect adjustment to the inliner’s
heuristics to impact our correctness proofs in any significant way, since the proofs
are designed to be independent of heuristic choices.
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