
A Verified Type System for CakeML

Yong Kiam Tan
IHPC, A*STAR

tanyk@ihpc.a-star.edu.sg

Scott Owens
University of Kent

S.A.Owens@kent.ac.uk

Ramana Kumar
NICTA and UNSW

Ramana.Kumar@nicta.com.au

ABSTRACT
CakeML is a dialect of the (strongly typed) ML family of program-
ming languages, designed to play a central role in high-assurance
software systems. To date, the main artefact supporting this is a
verified compiler from CakeML source code to x86-64 machine
code. The verification effort addresses each phase of compilation
from parsing through to code generation and garbage collection.

In this paper, we focus on the type system: its declarative speci-
fication, type soundness theorem, and the soundness and complete-
ness of an implementation of type inference – all formally verified
in the HOL4 proof assistant. Each of these aspects of a type system
is important in any design and implementation of a typed functional
programming language. They allow the programmer to soundly
employ (informal) type-based reasoning, and the compiler to ap-
ply optimisations that assume type-correctness. So naturally, their
verification is a critical part of a verified compiler.

CCS Concepts
•Theory of computation→ Logic and verification; Type theory;
•Software and its engineering→ Functional languages;

Keywords
Type inference; Compiler verification; ML

1. CONTEXT
A formally verified compiler comes with a proven theorem that

any observable behaviour of the object code is a permissible be-
haviour of the source code. Put more colloquially, we know that a
verified compiler introduces no bugs. When we are concerned with
the proper functioning of a safety- or security-critical software sys-
tem, using a verified compiler means that we do not have to inspect
what the compiler is doing. This can make building an assurance
case for the system easier. If we have gone to the extent of formally
verifying the system, then we know – without any lower confidence
– that the system as actually executed has the properties we verified
about it.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IFL ’15, September 14 - 16, 2015, Koblenz, Germany
© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4273-5/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2897336.2897344

Since 2012, the CakeML project (https://cakeml.org) has been
building a verified compiler for anML-like programming language.
The overall goal is to create an optimising compiler with mechani-
cally checked proofs of an end-to-end correctness theorem. An im-
portant additional goal is to verify (againwithmechanically checked
proofs) that the correctness theorem applies to the code of the com-
piler that is actually executed, and not just to the compilation algo-
rithm in the abstract. Here ‘end-to-end’ means that the correctness
theorem relates source code, represented as a string, with machine
code, represented as a list of bytes. Thus, the verification must
address a lexer, a parser, a type checker, a sequence of optimisations
and translations between various intermediate languages, a code
generator, and a run-time system. A previous paper [5] outlined
how all of these phases fit together, and detailed the interactive the-
orem proving techniques used to verify a non-optimising version of
the compiler.

In this paper, we focus on the type checking phase of the com-
piler. The external interface to the type checker is simple. Given
(an AST for) a program, it returns a boolean: whether the program
obeys CakeML’s typing discipline. Its importance stems from the
type soundness theoremwhich guarantees that well-typed programs
have well-defined semantics.1 This is important for any typed pro-
gramming language: most compilers assume that the input program
has well-defined semantics, and make optimisation decisions based
on that. It is doubly important in the context of verified compilers:
their correctness theorem has a well-definedness pre-condition, and
so we cannot use the theorem until we first prove that the source
program is well-defined. For some languages, well-definedness is
an undecidable property (e.g., C), but for CakeML (and type-safe
languages in general), a type inference algorithm can prove that the
program obeys the typing discipline. The type soundness theorem
then allows us to dispensewith the pre-condition and give a compiler
correctness theorem that applies to all programs, and characterises
which ones the compiler will accept/reject during type checking.

Contributions.
Our previous work [5] briefly mentioned CakeML’s type checker,

which at that point had a type soundness theorem, and an inferencer
soundness theorem, but not an inferencer completeness theorem.
Here, we give a thorough account of these theorems, and addition-
ally present

• a completeness theorem for the inferencer,

• an improved type system that dispenses with the elaboration
phase,

1Equivalently, well-typed programs do not crash, get stuck, go
wrong, have undefined behaviour, etc.

http://dx.doi.org/10.1145/2897336.2897344
https://cakeml.org

• an improved type soundness proof for an operational seman-
tics with more uniform handling of data constructors and
modules,

• support for a few extra language features, especially type
abbreviations, and

• the design constraints imposed by combining the value re-
striction with principal typings (§3.3).

On the proofs.
All of the theorems in this paper have been mechanically veri-

fied in the HOL4 theorem prover and are available from CakeML’s
code repository (https://code.cakeml.org). The type system’s def-
inition is in the semantics directory, along with the operational
semantics; the type soundness proof is in the semantics/proofs
directory; and everything to do with the inferencer is in the
compiler/inference directory. Overall the big technical chal-
lenges were in properly formulating the theorem statements and
invariants, rather than in applying theorem proving technology, and
so the former is our focus here.

Contents.
We first describe the CakeML language itself (§2), then we give

a declarative type system (§3) with a corresponding type inference
algorithm (§4). Then we move on to the correctness proofs: sound-
ness and completeness for the inferencer with respect to the type
system (§5), and type soundness with respect to an operational
semantics via preservation and progress lemmas (§6).

2. THE CAKEML LANGUAGE
CakeML is a strongly typed, strict, impure functional language

that mostly follows the design of Standard ML (SML) [10]. It
supports a substantial subset of the core language features includ-
ing (possibly mutually) recursive datatypes, higher-order functions,
pattern matching, references, and exceptions. Notable omissions
are records, and local (non-top-level) definitions of datatypes and
exceptions. The module system supports non-nested structures and
signatures, but not functors. See Fig. 1 for the syntax.

CakeML has a small-step operational semantics based on a CEK
machine [3], and it also has a big-step semantics that is proven
equivalent. Most of our compiler proofs use the latter semantics,
while the type soundness proof uses the small-step semantics. There
are a few minor differences in behaviour to SML which are not
relevant to us here.

3. TYPE SYSTEM
CakeML has a declarative type system defined by a syntax-

directed, inductively defined relation. The type system has four
relevant simplifications: it does not support equality types, type
annotations, operator overloading, or let polymorphism. Top-level
and module-top-level definitions can be polymorphic, and we plan
to add support for polymorphic let bindings and type annotations in
the future. Fig. 2 gives the definition of the various environments
and the shape of the main judgements.

Typing environments Γt are records containing four different
sub-environments M , T , C and V in fields called m, t, c, and v
respectively. The definition typing judgements build environment
fragments that describe the defined things, and we refer to those
using m , τ , c and vs .

Type definition environmentsT support type abbreviations, map-
ping a type constructor name to the type that it abbreviates, along

op := div | mod | + | - | < | > | <= | >= | <> | = | := | ::
| andalso | orelse

id := x | mn.x
cid := cn | mn.cn
t := α | id | t id | (t,t(,t)∗) id | t * t | t -> t | (t)
l := Const | () | []
p := x | l | cid | cid p | _ | (p(,p)∗) | [p (,p)∗] | p :: p
e := l | id | cid | cid e | (e,e (,e)∗) | [e (,e)∗]

| raise e | e handle p => e (| p => e)∗

| fn p => e | e e | e op e | ((e ;)∗ e)
| if e then e else e | case e of p => e (| p => e)∗

| let (ld | ;)∗ in (e ;)∗ e end
ld := val x = e | fun x p+ = e (and x p+ = e)∗

c := cn | cn of t
tyd := tyn = c (| c)∗

tyn := (α(,α)∗) x | α x | x
d := val p = e | fun x p+ = e (and x p+ = e)∗

| datatype tyd (and tyd)∗ | type tyn = t
| exception c

sl := val x : t | type tyn (= t)? | datatype tyd (and tyd)∗

sig := :> sig (sl | ;)∗ end
top := structuremn sig? = struct (d | ;)∗ end; | d;
prog := top∗

where x ranges over identifiers (must not start with a capital letter and must
not be an infix operator from op),α over SML-style type variables (e.g., ’a),
cn over constructor names (must start with a capital letter, or be true,
false, ref, or nil), mn over module names, and Const over integer,
string and character constants. We use ? to denote things that are optional.

Figure 1: CakeML syntax

Let t̂ be a de Bruijn indexed version of t . That is, instead of containing
named type variables ’a, ’b, etc., t̂ types contain natural number de Bruijn
indices.
We need the following environments, and auxillaries:

stamp := id | cid stamps
V̂ := ε empty type env.

| N, V̂ bind de Bruijn type variables
| x : 〈N, t̂〉, V̂ bind a type scheme

T ≡ id 7→ (α∗ × t) type def. env.

M ≡ mn 7→ (x × N× t̂) list module env.
C ≡ cid 7→ (α∗ × t∗ × stamp) constructor env.

We will use V to refer to the subset of V̂ that has no de Bruijn type variable
bindings (the second line above). Similarly, Γ̂t are typing environments
whose variable environments are of the form V̂ . Type schemes are pairs
containing the number of bound de Bruijn indices and a (de Bruijn-indexed)
type.
Typing judgements:

N, C `p p : t̂, vs pattern typing

Γ̂t `e e : t̂ expression typing

u, mn?, δ, Γt `d d : δ′, (τ,c,vs) definition typing
u, δ, Γt `t top : δ′, (m,τ,c,vs) top-level typing

Figure 2: Typing judgements

https://code.cakeml.org

with a list of type parameters. A type definition can appear inside
of a module, or at the top-level, so the module name mn is optional.
Since CakeML does not have nested structures, all identifiers ei-
ther refer to the current module or a different top-level module, and
so use optional module names rather than a list of module names.
Constructor environments C similarly record information for all
constructors introduced by a datatype or exception definition.
They record the type’s parameters, the types of the constructors ar-
guments, which may refer to the type parameters. Each constructor
is given a stamp, that either records which type the constructor
creates (for datatype constructors) or which exception it is (for ex-
ception constructors).

Module environments M map module names to the list of iden-
tifiers defined in that module, along with their type schemes. Since
type variables are represented using de Bruijn indices, we use a
number rather than a set of syntactic type variables, to represent
how many of them are quantified in the type scheme. Finally, vari-
able environments V̂ map variables to type schemes, but retain
enough structure to record where new type variables are bound.
This structural information is only needed at the expression level so
we distinguish between Γ̂t used in expressions typing and Γt used
for everything above that. Because of this separation, M and V
are kept as distinct environments rather than using id or cid as the
domain of a finite map as in T and C .

Definition environments δ are records containing the set of
names of defined modules, the set of identifiers for defined types
and the set of identifiers for defined exceptions. The fields are
named defined_mods, defined_types and defined_exns re-
spectively.
We will see more detail on how stamps and δ work in the dis-

cussion of the typing rules in §3.2. Their purpose is to separate
the notion of globally unique identity for each module, type, and
constructor from the scoping mechanisms of the language. The
Definition of Standard ML [10] uses a stamp generation mecha-
nism for this purpose, but this kind of stateful computation tends
to complicate proofs, so we instead adopt a mild syntactic restric-
tion. Top-level modules must have unique names, and the types
defined inside a module must have different names from each other.
Thus, fully qualified names of types are unique, and can be directly
used as stamps. Since we do not support (generative, higher-order)
functors, we can avoid stamp generation without having to imple-
ment the kind of sophisticated module system calculus that more
typically supports the purely syntactic (i.e., stamp-generation-free)
approach [4, 8].
The next sections explain the typing rules in more detail. As a

running example, we shall examine how the top-level definition, val
k = fn x => fn y => x, is typed. Note that we use syntactic
type variables, e.g. ’a, in our exposition although the formalisation
actually uses de Bruijn indices.

3.1 Expressions
The pattern- and expression-level typing judgements are mostly

typical, with the structure of V̂ being perhaps the only surprising
thing. Expression typing gives a type to an expression in a context,
whereas pattern typing gives a type to a pattern in a context, and
also gives types for all of the variables bound by the pattern. Fig. 3
gives the rules for pattern and expression variables, functions, and
let expressions, to show how V̂ is used.
The Fun rule binds a type scheme with no quantified type vari-

ables2, and a type whose free variables are also bound in V̂ . The
2We use Γ̂t,x : (tvs,t) to mean Γ̂t with its variable environ-
ment field extended with the mapping of x to the type scheme
(tvs,t).

(Pvar)
check_freevars tvs [] t

tvs, C `p x : t, [(x,t)]

(Var)

tvs = LENGTH ts

EVERY (check_freevars (num_tvs Γ̂t.v) []) ts

lookup x Γ̂t = SOME (tvs,t)

Γ̂t `e x : deBruijn_subst ts t

(Fun)

check_freevars (num_tvs Γ̂t.v) [] t1
Γ̂t,x : (0,t1) `e e : t2

Γ̂t `e fn x => e : t1 -> t2

(Let)

Γ̂t `e e1 : t1
Γ̂t,x : (0,t1) `e e2 : t2

Γ̂t `e let x = e1 in e2 : t2

Figure 3: Selected pattern and expression typing rules

free variable restriction is checked by check_freevars, whose
first argument limits the free variables, and num_tvs which returns
the number of bound type variables in the typing environment. The
second argument to check_freevars is used to rule out syntactic
type variables which should not occur internal to the type system.
Because theLet rule ismonomorphic, it similarly uses no quantified
type variables in the type scheme of x .

The Var rule finds the type scheme bound to the identifier in the
M or V̂ environments, depending on whether the identifier has a
module name or not. It can then make an arbitrary instantiation of
the tvs quantified type variables as long as their free variables are
all bound in V̂ .

Using two applications of Fun and one application of Var, we can
derive a number of types for the RHS expression in our example,
e.g. int -> int -> int, ’a -> ’a -> ’a and ’a -> ’b ->
’a, as long as ’a and ’b are bound in the Γ̂t that we use.

The pattern typing rules are used for top-level definitions and for
expression-level pattern matches. They return a type for the whole
pattern, and a list of variables bound in the pattern along with their
types. The types chosen for the variables satisfy all of the pattern’s
typing constraints. In the simplest case, the Pvar rule allows a
single pattern variable, like k , to be given any type t whose free
variables are bound by tvs (recall the de Bruijn representation). It
then returns t , along with a singleton list, [(k,t)].

3.2 Definitions
Fig. 4 presents the rules for top-level (and module-top-level) def-

initions. It omits the rule for fun definitions, which is similar to
the Dlet_poly rule, but specialised to making recursive functions.
It also specialises the Dtype rule to a single recursive datatype,
whereas the actual rule in CakeML handles a list of mutually recur-
sive datatypes.

There are two rules for value definitions, since CakeML, with
its imperative features, has a value restriction. Both rules ensure
that the LHS pattern does not try to bind the same value twice,
ensure that the pattern and expression have the same type, and then
return the pattern’s variable bindings. Neither, defines any new
modules, types, or constructors so there are no new identifiers in

their conclusions. The Dlet_mono rule binds 0 new type variables
when performing the pattern and expression typing judgements, so
that the resulting types from these judgements will not have any
type variables. It then uses add_tvs to convert each of the types in
vs in to type schemes with 0 quantified type variables. In contrast,
Dlet_poly binds tvs type variables in its premises and it uses
add_tvs to generate type schemes with tvs bound type variables.
The last premise of each rule is used to ensure determinism with the
value restriction, which we explain further in §3.3. The u parameter
is used to control whether these checks should be carried out; more
detail on that in §6.

Since the RHS expression of our running example is a value,
Dlet_poly is used to type it. Setting the tvs parameter to 2 allows
Pvar to give k a polymorphic type with two bound type variables,
’a -> ’b -> ’a, which is one of the possible types for the RHS
expression. This would not be possible with Dlet_mono, since the
number of type variables is explicitly set to 0.
The rule for type abbreviations (Dtabbrev) checks that the ab-

breviated type is well formed i.e. that the raw type variables it
mentions are bound in targs . It introduces no new modules, data
types, or constructors. It binds the name of the abbreviation in
the type definition environment, after first expanding out all of the
other abbreviations mentioned in the type. Abbreviations cannot
be recursive because the well-formedness check uses the previous
scope that does not contain a binding for this abbreviation yet. It
could contain a reference to a previous abbreviation with the same
name, and that would be expanded to the previous definition. The
effect of all of this is that type names for abbreviations are lexically
scoped (i.e., uses of a type name refer to the most recent enclos-
ing type abbreviation), and that the type system internally keeps all
abbreviations maximally expanded.
The rule for defining a new exception constructor (Dexn) checks

that the exception has not already been declared (although an ex-
ception with the same name in a different module is allowed), and
that its argument types are well-formed. It records that an exception
has been declared with its full module path, and binds the excep-
tion name in the constructor environment with no type parameters,
fully abbreviation-expanded argument types, and the stamp of the
exception.
The rule for defining a new datatype (Dtype) checks that the

datatype is not already defined (although a datatype with the same
name in a different module is allowed, as are datatypes that have
the same name as a type abbreviation in the same module). The
constructors must be distinct from each other, but could have the
same name as constructors in other datatypes. The argument types
to the constructors must be well formed. Since the datatype is
allowed to be recursive, the type definition environment is first
extended with a binding for the type being defined. This treats the
datatype’s name as an abbreviation for the stamp that represents
the true identity of the type. Lastly, the constructor environment
is extended with each constructor mapping to the type parameters,
fully abbreviation-expanded argument types, and the type that is
being constructed.

3.3 The value restriction and principal types
Although application of the value restriction is straightforward,

subtleties arise when considering the type of a top-level definition
at an intermediate program point. To illustrate, consider adding a
second definition to our running example:

val k = fn x => fn y => x;
val k_mono = ref (k 5);

TheRHS expression of the new definition can have a variety of types

according to the expression typing relation, e.g. (int -> int)
ref and (string -> int) ref. However, the value restriction
prevents the definition of k_mono from being given a polymorphic
type. The key question: is what type should k_mono be given when
there is no usage of the function to disambiguate? For example,
the two definitions might have been entered at the REPL, or they
might be defined, but not used, in a separately compiled module
with no explicit signature. In CakeML, such definitions do not
type check, and the CakeML type system thereby maintains the
principal type property: every expression with a type has a unique
principal type. This is the critical property that supports a complete
inference algorithm. See the online appendix3 for a comparison of
the decisions made by other ML implementations. We specify this
principal type property in two parts, corresponding to non-values
and values.

The Dlet_mono rule uses type_pe_determ to ensure that am-
biguously typed non-values are not type-able. Any bindings vs and
vs ′ that can arise from the pattern and expression of a val definition
must be equivalent.

type_pe_determ Γt p e ⇐⇒
∀ t1 vs t2 vs′.

0, Γt.c `p p : t1, vs ∧ Γt `e e : t1 ∧
0, Γt.c `p p : t2, vs′ ∧ Γt `e e : t2 ⇒
vs = vs′

Since ref (k 5) is not a value but it can be given distinct types
under the expression typing relation, we cannot type k_mono in our
type system.

A more exotic problem arises if the typing relation were to allow
defined values to have types that are not principal. Our discussion
above implicitly assumed that k was assigned a principal type, ’a
-> ’b -> ’a. As a result, the expression typing for ref (k 5)
could pick more than one type to instantiate ’b, and so we obtained
a type error.

If we allowed the type system to choose to type k with a less
general type, e.g. ’a -> ’a -> ’a, then ref (k 5) could be
uniquely typed as (int -> int) ref and so the definition of k_-
monowould be accepted. However, we cannot choose a less general
type for k without prior knowledge of the subsequent definition.
The Dlet_poly rule uses most_gen_env to ensure that the typing
relation always gives the most general environments, and that the
definition of k_mono is a type error. It checks that any other environ-
ment add_tvs tvs ′ vs ′ derived from the pattern and expression
typing rules is generalised by add_tvs tvs vs . The generalisation
condition weakE holds iff we can apply substitutions on de Bruijn
variables bound in add_tvs tvs vs to obtain add_tvs tvs ′ vs ′.

most_gen_env Γt p e tvs vs ⇐⇒
∀ tvs′ vs′ t ′.

tvs′, Γt.c `p p : t ′, vs′ ∧ bind_tvar tvs′ Γt `e e : t ′ ⇒
weakE (add_tvs tvs vs) (add_tvs tvs′ vs′)

4. INFERENCE ALGORITHM
Our type inference algorithm is based on Milner’s Algorithm
W [9], extended to top-level definitions. Internally, the inferencer
uses a state-exception monad to track its progress when it performs
type inference at the expression level. The monadic state is a record
consisting of a substitution (field name subst) that maps unifica-
tion variables to types, and a counter (field name next_uvar) that
generates fresh unification variables. As in AlgorithmW , the sub-
stitution is used to backtrack and apply unification constraints as the
inferencer walks an expression recursively; using a monad allows
3https://cakeml.org/ifl15/appendix.pdf

https://cakeml.org/ifl15/appendix.pdf

We need auxiliary functions where
• is_value e holds iff e is a literal constant, variable, function, or constructor fully applied to values,
• distinct holds iff its argument list does not contain the same element twice,
• pat_bindings p [] returns the variables bound by pattern p,
• bind_tvar tvs Γt binds an additional tvs de Bruijn type variables in the variable environment of Γt ,
• add_tvs tvs vs quantifies tvs type variables in each type in vs ,
• most_gen_env and type_pe_determ are defined in §3.3 to ensure that we only get principal types under the value restriction,
• check_abbrev T t ensures that all of the type abbreviations in t exist in the environmentT , while expand_abbrev T t expands those abbreviations

according to the environment,
• mk_id makes names fully qualified by adding the module name (if one exists),
• TypeExn is the exception type constructor, Tapp applies some type constructor,
• merge_t merges the type definition environments, and
• check_ctor_tenv checks that each constructor being defined (and their types) are well-formed, while build_ctor_tenv adds those constructors to

the typing environment.

(Dlet_poly)

is_value e
distinct (pat_bindings p [])

tvs, Γt.c `p p : t, vs
bind_tvar tvs Γt `e e : t

u ⇒ most_gen_env Γt p e tvs vs

u, mn?, δ, Γt `d val p = e : δ∅, (∅,[], add_tvs tvs vs)

(Dlet_mono)

distinct (pat_bindings p [])
0, Γt.c `p p : t, vs

Γt `e e : t
u ⇒ ¬is_value e ∧ type_pe_determ Γt p e

u, mn?, δ, Γt `d val p = e : δ∅, (∅,[], add_tvs 0 vs)

(Dtabbrev)

check_freevars 0 targs t
check_abbrev Γt.t t
distinct targs

t ′ = expand_abbrev Γt.t t

u, mn?, δ, Γt `d type (targs) tn = t : δ∅, (tn 7→ (targs,t ′),[], [])

(Dexn)

EVERY (check_freevars 0 []) ts
mk_id mn? cn /∈ δ.defined_exns
EVERY (check_abbrev Γt.t) ts

δ′ = δ∅ with defined_exns := {mk_id mn? cn }
ts′ = MAP (expand_abbrev Γt.t) ts

u, mn?, δ, Γt `d exception cn of ts : δ′, (∅,[(cn,[],ts′,TypeExn (mk_id mn? cn))], [])

(Dtype)

t ′ = tn 7→ (tvs, Tapp (MAP Tvar tvs) (TC_name (mk_id mn? tn)))
merged_t = merge_t (∅,t ′) Γt.t

check_ctor_tenv mn? merged_t [(tvs,tn,ctors)]
mk_id mn? tn /∈ δ.defined_types

δ′ = δ∅ with defined_types := {mk_id mn? tn }

u, mn?, δ, Γt `d datatype tvs tn = ctors : δ′, (t ′,build_ctor_tenv mn? merged_t [(tvs,tn,ctors)], [])

Figure 4: Definition typing rules (fun rule omitted, datatype rule simplified)

infer_e Γi x =
do
(tvs,t) ← lookup x Γi.inf_v;
uvs ← n_fresh_uvar tvs;
return (infer_deBruijn_subst uvs t)

od

infer_e Γi (fn x => e) =
do

u ← fresh_uvar;
t ← infer_e (Γi,x : (0,u)) e;
return (u -> t)

od

infer_e Γi (e1 e2) =
do

t1 ← infer_e Γi e1;
t2 ← infer_e Γi e2;
u ← fresh_uvar;
add_constraint t1 (t2 -> u);
return u

od

Figure 5: Selected expression inference cases.

us to represent this cleanly in higher-order logic. Our unification
algorithm is based on triangular substitutions and was verified pre-
viously [6]; we define encoding and decoding functions to convert
between the inferencer types and the generic terms over which the
verified unification algorithm operates. Like the type system, we
also keep track of a typing environment Γi and the defined names
δi . These environments are similar to their type system counter-
parts but we can use more efficient representations in the inferencer.
To emphasize this difference, we prefix both environment’s record
fields with inf_.

4.1 Expressions
Type inference for expressions, infer_e, is where we make

primary use of unification. Every call to infer_e either fails
with a type error or succeeds and returns a type. On successful
inference, we obtain the inferred type by applying the substitution
in the final monad state, subst , to the returned type, t . We write
this as t[subst] and refer to it as a solution of the inferencer.

The important cases, corresponding to variables, functions and
applications respectively, are shown in Fig. 5. Various helper
functions are used to interact with the monad: fresh_uvar and
n_fresh_uvar respectively extract 1 and tvs fresh unification vari-
ables for use in the inference rules, infer_deBruijn_subst re-
places bound de Bruijn variables with fresh unification variables
while add_constraint adds unification constraints to the current
substitution.

For functions, we recursively call infer_e on the nested ex-
pression e after adding x to the variable environment with a fresh
unification variable, u , for its type. This unification variable may
get constrained inside the recursive call but it might also be left
unconstrained. In our running example, the type for the RHS ex-
pression is inferred in 3 recursive calls to infer_e. The first two
bind x and y to two fresh unification variables (0,u) and (0,v)
respectively. The final call looks up x in the variable environment
and returns u , since there are no bound de Bruijn variables in its
type scheme. The returned type is therefore u -> v -> u , and the
final substitution is empty since no unification constraints were ap-
plied. Notice that unlike in AlgorithmW , unconstrained unification
variables are handled at the top-level.

infer_d mn? δi Γi (val p = e) =
do
init_state;
t1 ← infer_e Γi e;
(t2,env ′) ← infer_p Γi.inf_c p;
names ← return (MAP FST env ′);
guard (distinct names)

“Duplicate pattern variable”;
add_constraint t1 t2;
ts ← subst_list (MAP SND env ′);
(tvs,s,ts′) ← return (gen_list ts);
guard (tvs = 0 ∨ is_value e)

“Value restriction violated”;
return (δ∅,∅,[],ZIP (names,MAP (λ t. (tvs,t)) ts′))

od

infer_d mn? δi Γi (type (targs) tn = t) =
do
guard (distinct targs) “Duplicate type variables”;
guard
(check_freevars 0 targs t ∧
check_abbrev Γi.inf_t t) “Bad type definition”;

return
(δ∅,tn 7→ (targs,expand_abbrev Γi.inf_t t),[],[])

od

Figure 6: Selected definition inference cases.

4.2 Definitions
At the top-level, our inferencer essentially applies the typing rules

directly to type check its input. We focus here on two illustrative
cases of the type inferencer for definitions, shown in Fig. 6. The
various guard expressions are used to check the preconditions of
the type system rules. The rest of the inferencer, e.g. top-level
module definitions, corresponds closely to the type system and so
we do not discuss it further.

The first case in Fig. 6 corresponds to type inference for new
value definitions of the form val p = e . Starting from an empty
substitution in the initial monadic state, we infer a type for e and
ensure the typing constraints introduced by the bindings in pattern
p are satisfied. Next, subst_list applies the internal substitution
over the types in env ′. Using gen_list, we replace all the re-
maining, unconstrained unification variables in ts with bound type
variables, returning the resulting types as ts ′ and the number of
bound variables, tvs . If the value restriction applies, we addition-
ally check that this step did not end up generalising any variables,
i.e. that tvs = 0. For our running example, the pattern inference
simply returns a fresh unification variable w along with a singleton
list [(k,w)]. After applying the unification constraints and substi-
tution, we get ts = [u -> v -> u]. The generalisation step then
produces our desired type, ’a -> ’b -> ’a. Since the expression
was a value, this is accepted and returned as the type for the new
binding k.

The latter case corresponds to type inference for a new type
abbreviation. Like the type system, new type abbreviations are
checked for well-formedness before they are added to the typing
environment. Notice that it corresponds very closely to the type
system’s Dtabbrev rule.

On successful inference in either case, we return a 4-tuple con-
sisting of the newly defined names, type definitions, constructor
definitions and value definitions respectively. These are added to
the typing environment as we move on to subsequent definitions.

5. INFERENCER VERIFICATION
We divide the verification effort for our type inferencer into

soundness and completeness theorems. Informally, inferencer
soundness shows that any program with an inferred type has a valid
typing derivation in the type system while inferencer completeness
shows that any type that can be derived in the type system for a
program is generalised by the inferred type. In both directions, we
further divide the proofs into expression-level and top-level theo-
rems. This division is useful as it turns out that both expression-level
theorems are required for each of the top-level proofs. Several con-
version functions, e.g. conv_decl will appear in the theorems
below. These convert between representations of the type system
and the inferencer, e.g. from sets to lists, but are otherwise non-
crucial to the proofs. Similarly, we use ellipses to abbreviate some
parts of theorems that are not relevant to the discussion.

5.1 Expression-level theorems
The key difference between type system judgements and infer-

encer solutions at the expression level is the presence of unification
variables in their respective typing judgements. Moreover, the in-
ferencer is completely deterministic while the relational type system
can have several typing judgements for a single expression. Hence,
the inferred type needs to generalise all possible types for an ex-
pression; unification variables allow it to do this deterministically:
they should appear wherever there is a free choice of type.

We define a formal substitution completion relation (below) that
allows us to fully constrain any unconstrained unification variables.
The 3-ary relation pure_add_constraints holds iff s2 is the re-
sult of successfully adding some additional unification constraints,
constraints , to s1. To be in the sub_complete relation, check_t
further ensures that applying the substitution of s2 on any unifica-
tion variables present in the domain of s2 results in a type, u[s2]
with no further unification variables. This implies that any inferred
type, t[s2], has no unification variables. The extra argument tvs
gives the number of de Bruijn variables allowed, while next_uvar
is used to restrict the domain of s2; count tvs is the set of natural
numbers less than tvs . Our soundness and completeness theorems
relate the type system and inferencer using this relation.

sub_complete tvs next_uvar s1 constraints s2 ⇐⇒
pure_add_constraints s1 constraints s2 ∧
count next_uvar ⊆ FDOM s2 ∧
∀ u. u ∈ FDOM s2 ⇒ check_t tvs ∅ u[s2]

Next, we need a few invariants on the inferencer state. The first in-
variant, check_state, checks that the monadic state is consistent
with the variable environment, e.g. unification variables that have
not been generated yet should neither be present in the variable
environment nor the internal substitution. The second invariant,
check_env_e, checks for consistency between parts of the con-
structor and module environments of Γ̂t and Γi , e.g. that all the
constructors are present in both environments. These parts of the
typing environments are used but not modified at the expression
level. The last invariant we need links the changing parts of both
typing environments, namely, the variables and their types. These
will be explained separately in the corresponding theorems.
The soundness theorem shows that (under suitable consistency as-

sumptions) any completion of a (converted) solution from the infer-
encer, conv_t t[s], corresponds to a typing judgement in the type
system. The soundness invariant4, tenv_inv, carries this property
up to the variable typing environment: it states that whenever we
4Our actual invariants also deal with alpha equivalence between
the environments that can be introduced at the definitions level.
Even though we use a de Bruijn representation, we still need alpha

successfully lookup a variable x in Γi with type t , a corresponding
lookup of x in Γ̂t yields type t ′ such that t ′ = conv_t t[s].

Theorem 5.1. Expression-level soundness.

` infer_e Γi e st = (Success t,st ′) ∧
check_env_e Γ̂t Γi ∧ check_state st Γi.inf_v ∧
sub_complete (num_tvs Γ̂t.v) st ′.next_uvar st ′.subst

constraints s ∧ tenv_inv s Γi.inf_v Γ̂t.v ⇒
Γ̂t `e e : conv_t t[s]

Proof. By induction using the induction theorem for infer_e
and case analysis. Our tenv_inv invariant is motivated by the
cases where we add variables into the typing environment i.e. Fun,
Let and variable lookups Var. The proof is otherwise routine with
the correct choice of invariant.

The completeness theorem shows that (under suitable consistency
assumptions) for any typing judgement, the inferencer succeeds
and we can find some completion of its solution, conv_t t ′[s ′],
to match that typing judgement. Like Theorem 5.1, we need a
completeness invariant, tenv_invC, that carries this property up
to the variable typing environment. Namely, we assume that the
inferencer is started in some state from which we already know a
completion under which lookups in Γ̂t correspond to lookups in Γi .

Theorem 5.2. Expression-level completeness.

` Γ̂t `e e : t ∧ check_env_e Γ̂t Γi ∧
check_state st Γi.inf_v ∧
sub_complete (num_tvs Γ̂t.v) st.next_uvar st.subst

constraints s ∧ tenv_invC s Γi.inf_v Γ̂t.v ∧ . . . ⇒
∃ t ′ st ′ s′ constraints′.
infer_e Γi e st = (Success t ′,st ′) ∧
sub_complete (num_tvs Γ̂t.v) st ′.next_uvar

st ′.subst constraints′ s′ ∧
t = conv_t t ′[s′] ∧ . . .

Proof. By rule induction on typing derivations. Interesting
cases occur when we add variables to the typing environment and
when we need to apply unification constraints in the inferencer.

To illustrate, let us consider fn x => x + 5. By inversion, the
last rule used in the type system to type this expression must be
Fun. The premise of Fun adds some (valid) type scheme, say,
x:(0,int) to its environment. The inferencer on the other hand,
uses a fresh unification variable u in place of int. Since we
generated a new unification variable, we need to constrain it in the
substitution completion in a way that satisfies tenv_invC for our
inductive hypothesis between the function bodies. To do this, we
precisely apply the constraint corresponding to the type picked by
the type system i.e. we constrain u to int.

When we type the function body, x + 5, we inductively know
a list of the unification constraints, constraints (including the one
for u) that completes the inferencer’s initial internal substitution,
st , to match the type system. However, the inferencer now attempts
to apply its own unification constraint constraints ′ between u and
int on st . Our general strategy for these cases is to first show that
applying constraints ′ after applying constraints succeeds but has
no effect since it must be implied by constraints . Then, we show
that unification constraints can be re-ordered without changing the
resulting substitution. This implies that (1) applying constraints ′

on st succeeds and (2) further applying constraints on the result
gives us a completed substitution. These can then be used as suitable
witnesses for the conclusion of this theorem.

equivalence to treat polymorphic types such as 0 -> 1 -> 0 as
equivalent to 1 -> 0 -> 1.

5.2 Top-level theorems
Our top-level soundness and completeness theorems apply to the

type checking phase of an entire CakeML program. As before, we
focus here on the handling of new definitions as the type system and
inferencer behave similarly above the definitions level. The main
difficulty is to reconcile the high-level specification of the value re-
striction rules in the type system with the direct implementation in
the inferencer. The formof our value restrictions leads to an interest-
ing interplay between the expression-level soundness/completeness
theorems and both top-level theorems. Note that the first argument
to the typing rules is set to true, i.e. the additional principal type
restrictions are turned on.

To begin, we define env_rel, an invariant between Γt and Γi

that checks consistency of the typing environments. It encompasses
check_env_e shown above and uses check_env_d to make addi-
tional checks on the variable and type abbreviation environments
that we did not need at the expression level. Crucially, we also
assume that tenv_alpha holds between the two variable environ-
ments. It is the conjunction of tenv_inv and tenv_invC used at
the expression level. This means that the variables defined so far
at the top level are the same in both environments and their cor-
responding types are alpha equivalent with respect to bound type
variables. Since we do not need to consider any types with unifica-
tion variables at this level, the first argument to both relations is set
to ∅.

env_rel Γt Γi ⇐⇒
check_env_e Γt Γi ∧ check_env_d Γt Γi ∧
tenv_alpha Γi.inf_v Γt.v

tenv_alpha Γi.inf_v Γt.v ⇐⇒
tenv_inv ∅ Γi.inf_v Γt.v ∧ tenv_invC ∅ Γi.inf_v Γt.v

The soundness theorem has a shape very similar to Theorem 5.1.
We show that any new definitionmade by the inferencer corresponds
to one that can be made by the type system.

Theorem 5.3. Definition-level soundness.

` infer_d mn? δi Γi d st = (Success (δi ′,τ,c,v),st ′) ∧
env_rel Γt Γi ⇒
T, mn?, conv_decl δi, Γt

`d d : conv_decl δi ′, (τ,c,conv_v v)

Proof. By case analysis on the input definition. The important
cases arise in value definitions, val p = e .

Case: e is not a value. By Theorem 5.1, we have that the inferred
solution for e is a valid typing in the type system. The inferencer
additionally checks that no unconstrained unification variables are
in the inferred type, t . To use the Dlet_Mono rule, we need to
show additionally that t is the unique choice of type for e . Consider
any type for e in the type system, t ′; by Theorem 5.2, there is a
completion of our inferred solution to yield t ′. However, since
there are no unconstrained unification variables in the solution,
the additional unification constraints from this completion cannot
change the inferred type. Hence, t = t ′ and the inferred type is
unique.

Case: e is a value. We need to show that the inferred type for e
is (1) a valid typing judgement in the type system and (2) a most
general type. For (1), we first note that the generalisation process
replaces unconstrained unification variables with bound type vari-
ables. We can equivalently apply a set of unification constraints
between unification variables and type variables. This is a substitu-
tion completion, and hence by Theorem 5.1, the generalised type is
a valid type for e . For (2), any other type for e in the type system,

t ′, has, by Theorem 5.2, a corresponding completion of the infer-
encer’s solution that yields it. The inferencer generalises unification
variables that are unconstrained but these are precisely the variables
that get constrained by the completion. Hence, we can construct the
required type variable substitution by matching each type variable
to the substituted type of the unification variable it generalises. To
illustrate further, consider the identity function val f = fn x =>
x. The right-hand expression is typed as u -> u by the inferencer
which then generalises it to ’a -> ’a. For any other valid type,
e.g. int -> int, we know by Theorem 5.2 a completion which, in
this case maps u to int. We can use this to produce a corresponding
de Bruijn substitution, namely, mapping ’a to int.

The completeness theorem shows that for any valid definition-
level typing judgement, the inferencer also succeeds and that all of
the newly defined variables in v ′ are alpha equivalent to those that
were produced by the type system. Here, bind_env is a helper
function that converts v to a variable environment.

Theorem 5.4. Definition-level completeness.

` T, mn?, δ, Γt `d d : δ′, (τ,c,v) ∧ env_rel Γt Γi ∧
conv_decl δi = δ ⇒
∃ st ′ δi ′ v ′.
conv_decl δi ′ = δ′ ∧
infer_d mn? δi Γi d st =
(Success (δi ′,τ,c,v ′),st ′) ∧
tenv_alpha v ′ (bind_env v) ∧ . . .

Proof. By case analysis on the input definition. The important
cases arise in value definitions, val p = e .
Case: e is not a value. By Dlet_mono, we have a unique type,
t , for e and by Theorem 5.2 the inferencer succeeds and there is a
completion of its solution to yield t . Suppose for contradiction that
the inferencer’s solution has at least one unconstrained unification
variable. We now construct two distinct completions by unifying
all such unconstrained unification variables with int and bool
respectively. By Theorem 5.1, the resulting (distinct) types are both
valid typing judgements in the type system. This contradicts the
uniqueness of t so we have no unification variables in the solution
and the value restriction check in the inferencer succeeds.
Case: e is a value. We need to show that (1) the inferencer succeeds
and (2) anymost general type for e is alpha equivalent to the inferred
solution. For (1), we note directly that by Theorem 5.2, there exists
a completion of the inferencer’s solution for that type. We prove
(2) by constructing type variable substitutions from (2.1) the type
system’s type to the inferred type and (2.2) the inferred type to the
type system’s type. The proof of (2.1) is similar to soundness: we
construct a substitution completion from the generalisation step and
by Theorem 5.1, this is a valid typing of e in the type system which
must be generalised by a most general type. The proof of (2.2)
uses Theorem 5.2 to construct type variable substitutions for the
generalised unification variables.

6. TYPE SOUNDNESS
While the soundness and completeness theorems for the infer-

encer give us a practical algorithm for type checking CakeML pro-
grams, the type soundness theorem tells us that those programs that
do have a type will not get stuck. This is important for the usual
software engineering reasons, but also because the rest of the veri-
fied compiler uses the knowledge that the source program does not
get stuck. For example, for a function application, the compiler can
generate code that directly pulls a pointer from a closure record and
jumps to it. It does not have to also generate a check that the value

Mv ≡ id 7→ v module environments
Cv ≡ cid 7→ (N× stamp) constructor environments
∆ ≡ (cn × stamp) 7→ (α∗ × t∗) constructor stamp environments
S ≡ . . . store typing (definition omitted)

v := Lit l literals
| Conv (cid stamp)? v∗ constructors
| Closure env x e closure values
| RecClosure env (〈x , x , e〉)∗ x recursive closures
| Loc loc heap locations
| Vector v∗ immutable vectors

Vv := ε empty environment
| x : v ,Vv bind a value

where loc ranges over numbers and env is a record containing Mv , Cv ,
and Vv , similar to Γt .

tvs, ∆, S `v v : t̂ value typing
∆, S `env Vv : V environment typing
S, ∆ `mod Mv : M module env. typing
∆ `con Cv : C constructor env. typing

Figure 7: Values and typing judgements

being called is actually a closure, because the operational semantics
would get stuck if a non-closure value ends up being applied as a
function.

We prove type soundness in two stages. The first, for expressions,
is proved via preservation and progress lemmas with respect to a
small-step operational semantics [15]. The second uses a big-step
semantics for definitions, and is proved directly by induction over
the list of definitions. This is relatively straightforward, since a
definition cannot diverge, unless one of its constituent expressions
does. Most of the interesting details occur at the expression level,
and so we focus on it here.

A typical type soundness proof uses a structural operational se-
mantics or a reduction semantics, where function application is
modelled with substitution. In contrast, our semantics is based on
theCEK-machine [3].5 Thus, we have environments that give values
to free variables, continuation stacks that explicitly model control
flow, and closures to represent function values; we also have a store.
We chose this style of semantics because it fit well with our big-step
semantics for expressions, which is what the compiler verification
uses – we have proved the two semantics equivalent, so we can use
either according to convenience. If we had chosen a different form
of small-step semantics our proofs (especially our big-step/small-
step equivalence proofs) would be structured differently, but the
more intricate details would be essentially similar.

6.1 Values and environments
Figure 7 gives the definition of environments and values, as well

as the shape of additional typing judgements to give them types.
Constructor values contain the unique stamp of their constructor, or
none in the case of a tuple. Closures contain an expression, the name
of the function’s argument, and all three kinds of environments,
since the expression can refer to free variables, constructor names,
and module names. Recursive closures contain a bundle of named
5We are not aware of any type soundness proof in the literature that
uses such a semantics.

recursive functions with at least one named argument, in addition
to the environments.

The Mv and Vv environments are the counterparts to the M
and V type environments, mapping identifiers to values rather than
types. Although Mv is straightforward, Vv has a small subtlety.

Type environments V can both bind variables to types and bind
new type variables, but Vv can only bind variables to values and
cannot bind type variables. This is sufficient because of the value
restriction. To type a let-expression (or top-level definition), the
type environment is extended with the type variables (implicitly)
bound by the let, before typing the bound expression. However,
the value restriction requires that that expression is a syntactic value,
and so the environment does not need to be extended because the
syntactic value can immediately be converted to a value (element
of v) without consulting the environment. This supports a simpli-
fication for looking up a value in Vv : it can directly have the same
type as it had when it was added to Vv . Thus, we avoid shifting
de Bruijn in the preservation lemma that would otherwise occur,
corresponding to the possibility of evaluation under a type variable
binder.

Constructors need two additional environments, Cv which mod-
els the lexical scoping of constructors, and maps identifiers to the
constructor’s number of arguments and its unique identity (i.e., its
stamp). By including the number of arguments, the small-step se-
mantics can get stuck if the constructor is given the wrong number,
and hence the compiler can assume that constructors are never ap-
plied to the wrong number of arguments. The ∆ environment is not
used by the small-step semantics, or the type system, but it is needed
in the value typing judgements. It maps constructor stamps to the
type information for that constructor. This separation supports our
type soundness proof. Consider the following program:

datatype t = D of int
val x = D 4
datatype u = D of bool
val y = x
val z = D true

After executing the first 2 definitions, we have a state with the
following environments:

Cv = {D 7→ 〈1, t〉〉}
∆ = {〈D, t〉 7→ 〈[], int〉}

Vv = x : Conv (D t) 4, ε

Thus, looking ahead, y has type t, as does x, and z has type u. If
we evaluate the next definition, the environments change:

Cv = {D 7→ 〈1, u〉〉}
∆ = {〈D, u〉 7→ 〈[], bool〉; 〈D, t〉 7→ 〈[], int〉}

Vv = x : Conv (D t) 4, ε

Because the binding of constructor names in Cv follow lexical
scoping, the new binding for constructor D shadows the previous
one. This allows z to retain type u. Because ∆ uses the stamp,
it keeps both bindings, and since the value for x already in the
environment also uses the stamp, the type of x remains t. It is
essential that neither type changes.

The value typing judgement uses three pieces of data: a set of
bound type variables tvs for closures that were created with those
variables; a constructor stamp environment∆ for constructor values
(N.B., it does not take a lexical Cv because once something is a
value, it should have no free lexically scoped identifiers of any sort,
variables or constructor names); and a store for location values. The
environment and module environment judgements do not need the

type variable input, because their rules existentially quantify one
when needed. The constructor environment judgement additionally
does not need the store typing.

Figure 8 gives selected rules for typing values. All the _ok func-
tions check for well-formedness of their respecive environments.
The VTuple rule simply types all of the argument values (`vs does
`v for all of its arguments) and returns the tuple constructor applied
to those types.

The VCon rule finds the type parameters and argument types of
the constructor in ∆. It makes an arbitrary (well-formed) instantia-
tion of those parameters in the argument types, and checks that those
are the actual types of the argument values. Note that type_subst
substitutes on syntactic type variables rather than deBruijn ones.
The returned type is the type constructor that corresponds to stamp
(obtained via stamp_to_tc) applied to the instantiating types.

The VClosure rule types all of the environments in the closure,
and uses the resulting type environments to type the expression.

The EnvBind rule types an environment, one binding at a time.
It uses an arbitrary tvs to ensure that closures originating from
polymorphic bindings maintain enough polymorphism. Consider
the following example:

fun f x = x
val a = f 1
val b = f true

After evaluating the first definition, the environment is

Vv = f : Closure {} x x, ε

If we are not allowed to use a polymorphic type for f, then we have
to make a choice, say int, and we get the following, which cannot
type both subsequent definitions.

V = f : 〈0, int→ int〉, ε

Allowing type variables lets us instead get the following, which can
type both definitions (recall that types use de Bruijn indices).

V = f : 〈1, 0→ 0〉, ε

Lastly, the ConEnv rule checks for various consistency condi-
tions on the three forms of constructor environments. For example,
check_con_env is used to check that the same constructor names
appear in all three environments and have corresponding types.

6.2 Definitions
The definition level type soundness does not introduce any new

environments or intermediate types. The only challenge is in care-
fullymanaging the various invariants aboutwhich names are defined
in δ, to ensure that the stamp uniqueness guarantees that we rely
on are maintained. Most of these are straightforward, but tedious,
so we omit them here, and only explain the u parameter to the
definition-level judgements in Figure 4.
Recall that we use u to control whether the type of a value-

restricted definitionmust be principal. The inferencer completeness
theorem relies on principal types; however, the induction in the type
soundness proof does not go throughwith the principal typing check
present. Therefore, we prove type soundness with u being false, and
then prove the (obvious) fact that any program with a type when u
is true, also has the same type when it is false. This lets us move the
top-level type soundness theorem from the more permissive type
system, to the one that corresponds to the inference algorithm.
The following program illustrates how type preservation fails

when the check is left on.

val f x = x

val x = ref [1]
val _ = x := []
val y = f x

Herex andy have type int list ref, and the type checker accepts
the program. However, after evaluating the first three statements,
we are left with the following environment (omitting the indirection
through the store to simplify):

Vv = x : ref []; f : . . . , ε

From this, we can generate many different type environments,
and all of them will give y a different type, and thus, the
type_pe_determ check of Dlet_mono will fail.

V = x : 〈0, int list ref〉; f : . . . , ε

V ′ = x : 〈0, bool list ref〉; f : . . . , ε

Without the check, the type system can give y the now non-principal
type of int list ref to satisfy the preservation theorem.

Modules and signatures, instead of the store, can also provide an
example.

structure M :> sig val f : int -> int end =
struct
fun f x = x

end;
val v = (fn y => y) M.f;

Here, once evaluation has put f into the module environment and
the signature is lost, v no longer has a principal type.

7. DISCUSSION AND RELATED WORK

7.1 Type system design
Our type system is simpler than Standard ML’s in two key re-

spects. The first is that we do not (yet) support let polymorphism.
The main reason is that adding it will make our proofs, especially
inferencer completeness, significantly more complex while not nec-
essarily adding much utility to a CakeML user. For example, Vytin-
iotis et al. [13] suggest that the feature should be removed entirely.
Although their work is in the context of a more sophisticated type
system, they also experimentally showed that let polymorphism is
rarely used in existing Haskell code bases, including in the Haskell
boot libraries.

The second, and arguably more important omission is type an-
notations. This is work in progress for our compiler, since we need
to extend the verified parser to support annotations in many places.
However, we expect that adding annotations will not significantly
change any of our proofs.

7.2 Type inference
Damas and Milner proved AlgorithmW to be a sound, principal

type inferencer for ML expressions [1]. Our work formalises this
result for a real ML implementation, namely CakeML, and further
extends it tomodules, constructors, references, and exceptions. This
required us to develop a declarative type systemwith principal types
for value restricted definitions.

Type system design is delicate, and adding features beyond the
basic Hindley-Milner system can easily ruin principal types – hence
the hope for a complete inferencer – and possibly render the system
undecidable. Despite these complications, the mainstream of typed
functional programming language design seems to be for increas-
ing the features, and living without principal types, or requiring
some type annotations. Sometimes the trouble comes from a subtle

(VTuple)
tvs, ∆, S `vs vs : ts

tvs, ∆, S `v Conv NONE vs : Tapp ts TC_tup

(VCon)

EVERY (check_freevars tvs []) ts′

LENGTH tvs′ = LENGTH ts′

tvs, ∆, S `vs vs : MAP (type_subst tvs′ ts′) ts
lookup ∆ (cn, stamp) = SOME (tvs′,ts)

tvs, ∆, S `v Conv (SOME (cn,stamp)) vs : Tapp ts′ (stamp_to_tc stamp)

(VClosure)

∆ `con env.c : Γt.c
tenv_mod_ok Γt.m

S, ∆ `mod env.m : Γt.m
∆, S `env env.v : Γt.v
check_freevars tvs [] t1

(bind_tvar tvs Γt), n : (0,t1) `e e : t2

tvs, ∆, S `v Closure env n e : t1 -> t2

(EnvBind)

tvs, ∆, S `v v : t
∆, S `env Vv : V

∆, S `env n : v, Vv : V ,n : (tvs,t)
(ConEnv)

tenv_ctor_ok C
ctMap_ok ∆

check_con_env ∆ Cv C

∆ `con Cv : C

Figure 8: Selected value typing rules

interaction of seemingly innocuous features (as in the “avoidance
problem” from the SML module system [2]). That is the case here,
with the value restriction; we were able to restrict the type sys-
tem enough to regain principal types, but the value restriction is a
very minor tweak to the type system. For other popular features,
including GADTs, there is no solution for now, and one must be
resigned to using the type inference algorithm as the most precise
specification of the type system [14].

Naraschewski and Nipkow have mechanised a soundness and
completeness proof for Algorithm W [11]. Their underlying lan-
guage is a MiniML, with similar features to Damas and Milner’s
language, lacking imperative features, or any value restriction. They
also axiomatized the specification of the unification algorithm,
whereas we tie into an existing verified implementation. In contrast,
they verify completeness for a system that generalises nested lets,
whereas we have not yet done that.

7.3 Type soundness
Our type system and type soundness proof broadly follow our

previous work in OCamllight [12], with the main extension being
support for modules and signatures. Similar to OCamllight, we use
de Bruijn indices for type variables, and concrete names for other
variables. We also explicitly bind type variables in the environ-
ment. However, our operational semantics is different (CEK-style,
rather than SOS-style), and we have a more flexible treatment of
constructor names that follow lexical scoping, whereas OCamllight
required them to be unique.

Lee et al. [7] give a semantics for StandardML in Twelf via elabo-
ration into an internal language that includes support for translucent
sums and singleton kinds. They then prove type soundness for the
internal language. In contrast, our operational semantics and proofs
do away with elaboration and instead directly work with the abstract
syntax of CakeML, although we do not support the higher-order
functors that motivated the design of their internal language.

8. CONCLUSION
We have formally specified a type system and type inferencer for

CakeML. We provide a type soundness theorem for the type system
as well as soundness and completeness theorems linking the type
inferencer’s behaviour to the type system’s. CakeML aims to be a
practical programming language that is both easy to program in and
easy to reason about. The theorems in this paper are steps toward
the latter goal: any input CakeML program that is accepted by the
inferencer is guaranteed to have well-defined semantics.

Without completeness, our specification [5] of the top-level
CakeML read-eval-print loop (REPL) was unsatisfactory. When
a type-incorrect definition is entered, the REPL should print
<type error>, and await a new definition, and not execute any
part of the type-incorrect one. Ideally, whether a definition is type
correct is specified with respect to the type system, whereas the
implementation of the REPL uses the inferencer. However, with-
out an inferencer completeness theorem, we could not prove that
the implementation of the REPL did not signal a type error even
when the specification said it should not. Thus, we had to use the
inferencer to specify which definitions had type errors, even as the
inferencer soundness theorem allowed us to use the type system to
specify what type good definitions had. By verifying completeness,
we have significantly improved the semantics of the CakeMLREPL.

Acknowledgements
NICTA is funded by the Australian Government through the
Department of Communications and the Australian Research
Council through the ICT Centre of Excellence Program.

References
[1] L.Damas andR.Milner. Principal type-schemes for functional

programs. In Proc. 9th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’82, pages
207–212. ACM, 1982.

[2] D. Dreyer. Understanding and Evolving the ML Module Sys-
tem. PhD thesis, Carnegie Mellon University, 2005.

[3] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineer-
ing with PLT Redex. MIT Press, 2009.

[4] R. Harper and M. Lillibridge. A type-theoretic approach to
higher-order modules with sharing. In POPL’94: 21st ACM
SIGPLAN-SIGACTSymposium onPrinciples of Programming
Languages, pages 123–137, 1994.

[5] R.Kumar,M.O.Myreen,M.Norrish, andS.Owens. CakeML:
A verified implementation of ML. In POPL ’14: Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 179–191. ACM Press, Jan.
2014.

[6] R. Kumar andM. Norrish. (Nominal) Unification by recursive
descent with triangular substitutions. In Interactive Theorem
Proving, First International Conference, ITP 2010, volume
6172 of LNCS, 2010.

[7] D. K. Lee, K. Crary, and R. Harper. Towards a mechanized
metatheory of Standard ML. In Proceedings of the 34th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’07, pages 173–184. ACM,
2007.

[8] X. Leroy. Manifest types, modules, and separate compilation.
In POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 109–122, 1994.

[9] R. Milner. A theory of type polymorphism in programming.
J. Comput. Syst. Sci., 17(3), 1978.

[10] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Defi-
nition of Standard ML (Revised). MIT Press, 1997.

[11] W. Naraschewski and T. Nipkow. Type inference verified: Al-
gorithmW in Isabelle/HOL. Journal of Automated Reasoning,
23:299–318, 1999.

[12] S. Owens. A sound semantics for OCaml light. In Program-
ming Languages and Systems: 17th European Symposium on
Programming, ESOP 2008, volume 4960 of LNCS, pages 1–
15. Springer, Mar. 2008.

[13] D. Vytiniotis, S. Peyton Jones, and T. Schrijvers. Let should
not be generalized. In Proceedings of the 5th ACM SIGPLAN
Workshop on Types in Language Design and Implementation,
TLDI ’10. ACM, 2010.

[14] D.Vytiniotis, S. Peyton Jones, T. Schrijvers, andM. Sulzmann.
OutsideIn(X) Modular type inference with local assumptions.
J. Funct. Program., 21(4-5), 2011.

[15] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness. Inf. Comput., 115(1):38–94, 1994.

	Context
	The CakeML language
	Type system
	Expressions
	Definitions
	The value restriction and principal types

	Inference algorithm
	Expressions
	Definitions

	Inferencer verification
	Expression-level theorems
	Top-level theorems

	Type soundness
	Values and environments
	Definitions

	Discussion and Related Work
	Type system design
	Type inference
	Type soundness

	Conclusion

