
Proof-Producing Synthesis of CakeML with I/O
and Local State from Monadic HOL Functions

Son Ho1, Oskar Abrahamsson2, Ramana Kumar3, Magnus O. Myreen2,
Yong Kiam Tan4, and Michael Norrish5

1 MINES ParisTech, PSL Research University, France
2 Chalmers University of Technology, Sweden

3 Data61, CSIRO / UNSW, Australia
4 Carnegie Mellon University, USA
5 Data61, CSIRO / ANU, Australia

Abstract. We introduce an automatic method for producing stateful
ML programs together with proofs of correctness from monadic func-
tions in HOL. Our mechanism supports references, exceptions, and I/O
operations, and can generate functions manipulating local state, which
can then be encapsulated for use in a pure context. We apply this ap-
proach to several non-trivial examples, including the type inferencer and
register allocator of the otherwise pure CakeML compiler, which now
benefits from better runtime performance. This development has been
carried out in the HOL4 theorem prover.

1 Introduction

This paper is about bridging the gap between programs verified in logic and
verified implementations of those programs in a programming language (and
ultimately machine code). As a toy example, consider computing the nth Fi-
bonacci number. Here is a recursion equation for a function, fib, in higher-order
logic (HOL) that does the job.

fib n = if n < 2 then n else fib (n − 1) + fib (n − 2)

A hand-written implementation (shown here in CakeML [9], which has similar
syntax and semantics to Standard ML) would look something like this:

fun fiba i j n = if n = 0 then i else fiba j (i+j) (n-1);
(print (n2s (fiba 0 1 (s2n (hd (CommandLine.arguments())))));
print "\n")

handle _ => print_err ("usage: " ^ CommandLine.name() ^ " <n>\n");

In moving from mathematics to a real implementation, some issues are apparent:

(1) We use a tail-recursive linear-time algorithm, rather than the exponential-
time recursion equation.

(2) The whole program is not a pure function: it does I/O, reading its argument
from the command line and printing the answer to standard output.

(3) We use exception handling to deal with malformed inputs (if the arguments
do not start with a string representing a natural number, hd or s2n may
raise an exception).

The first of these issues (1) can easily be handled in the realm of logical
functions: We define the tail-recursive version in logic

fiba i j n = if n = 0 then i else fiba j (i + j) (n − 1)

then produce a correctness theorem, ` ∀n. fiba 0 1 n = fib n, with a simple
inductive proof (a 5-line tactic proof in HOL4, not shown).

Now, because fiba is a logical function with an obvious computational coun-
terpart, we can use proof-producing synthesis techniques [13] to automatically
synthesise code verified to compute it. We thereby produce something like the
first line of the CakeML code above, along with a theorem relating the semantics
of the synthesised code back to the function in logic.

But when it comes to handling the other two issues, (2) and (3), and produc-
ing and verifying the remaining three lines of CakeML code, our options are less
straightforward. The first issue was easy because we were working with a shal-
low embedding, where one writes the program as a function in logic and proves
properties about that function directly. Shallow embeddings rely on an analogy
between mathematical functions and procedures in a pure functional program-
ming language. Effects, however, like state, I/O, and exceptions, can stretch this
analogy too far. The alternative is a deep embedding : one writes the program
as an input to a formal semantics, which can accurately model computational
effects, and proves properties about its execution under those semantics.

Proofs about shallow embeddings are relatively easy since they are in the
native language of the theorem prover, whereas proofs about deep embeddings
are filled with tedious details because of the indirection through an explicit
semantics. Still, the explicit semantics make deep embeddings more realistic.
An intermediate option that is suitable for the effects we are interested in —
state/references, exceptions, and I/O — is to use monadic functions: one writes
(shallow) functions that represent computations, aided by a composition op-
erator (monadic bind) for stitching together effects. The monadic approach to
writing effectful code in a pure language may be familiar from the Haskell lan-
guage which made it popular.

For our nth Fibonacci example, we can model the effects of the whole pro-
gram with a monadic function, fibm, that calls the pure function fiba to do the
calculation. Figure 1 shows how fibm can be written using do-notation familiar
from Haskell. This is as close as we can get to capturing the effectful behaviour
of the desired CakeML program while remaining in a shallow embedding. Now
how can we produce real code along with a proof that it has the correct seman-
tics? If we use the proof-producing synthesis techniques mentioned above [13],
we produce pure CakeML code that exposes the monadic plumbing in an explicit
state-passing style. But we would prefer verified effectful code that uses native
features of the target language (CakeML) to implement the monadic effects.

2

fibm () =
do
args ← commandline (arguments ());
a ← hd args;
n ← s2n a;
stdio (print (n2s (fiba 0 1 n)));
stdio (print “\n”)

od otherwise
do
name ← commandline (name ());
stdio (print_err (“usage: ” ^ name ^ “ <n>\n”))

od

Fig. 1. The Fibonacci program written using do-notation in logic.

In this paper, we present an automated technique for producing verified ef-
fectful code that handles I/O, exceptions, and other issues arising in the move
from mathematics to real implementations. Our technique systematically estab-
lishes a connection between shallowly embedded functions in HOL with monadic
effects and deeply embedded programs in the impure functional language CakeML.
The synthesised code is efficient insofar as it uses the native effects of the target
language and is close to what a real implementer would write. For example, given
the monadic fibm function above, our technique produces essentially the same
CakeML program as on the first page (but with a let for every monad bind),
together with a proof that the synthesised program is a refinement.

Contributions Our technique for producing verified effectful code from monadic
functions builds on a previous limited approach [13]. The new generalised method
adds support for the following features:

– global references and exceptions (as before, but generalised),
– mutable arrays (both fixed and variable size),
– input/output (I/O) effects,
– local mutable arrays and references, which can be integrated seamlessly with

code synthesis for otherwise pure functions, and,
– composable effects, whereby different state and exception monads can be

combined using a lifting operator.

As a result, we can now write whole programs as shallow embeddings and obtain
real verified code via synthesis. Prior to this paper, whole program verification
in CakeML involved manual deep embedding proofs for (at the very least) the
I/O wrapper. To exercise our toolchain, we apply it to several examples:

– the nth Fibonacci example already seen (exceptions, I/O)
– the Floyd Warshall algorithm for finding shortest paths (arrays)
– the CakeML compiler’s type inferencer (local refs, exceptions)
– the CakeML compiler’s register allocator (local refs, arrays)

3

– the Candle theorem prover’s kernel [8] (global refs, exceptions)
– an OpenTheory [7] article checker (global refs, exceptions, I/O)

In §5, we compare runtimes with the previous non-stateful versions of CakeML’s
register allocator and type inferencer; and for the OpenTheory reader we com-
pare the amount of code/proof required before and after using our technique.

The HOL4 development is at https://code.cakeml.org; our new synthesis
tool is at https://code.cakeml.org/tree/master/translator/monadic.

2 High-level ideas

This paper combines the following three concepts in order to deliver the con-
tributions listed above. The main ideas will be described briefly in this section,
while subsequent sections will provide details. The three concepts are:

(i) synthesis of stateful ML code as described in our previous work [13],
(ii) separation logic [15] as used by characteristic formulae for CakeML [5], and
(iii) a new abstract synthesis mode for the CakeML synthesis tools [13].

Our previous work on proof-producing synthesis of stateful ML (i) was severely
limited by the requirement to have a hard-coded invariant on the program’s state.
There was no support for I/O and all references had to be declared globally. At
the time of developing (i), we did not have a satisfactory way of generalising the
hard-coded state invariant.

In this paper we show (in §3) that the separation logic of CF (ii) can be used
to neatly generalise the hard-coded state invariant of our prior work (i). CF-style
separation logic easily supports references and arrays, including resizable arrays,
and, supports I/O too because it allows us to treat I/O components as if they are
heap components. Furthermore, by carefully designing the integration of (i) and
(ii), we retain the frame rule from the separation logic. In the context of code
synthesis, this frame rule allows us to implement a lifting feature for changing
the type of the state-and-exception monads. Being able to change types in the
monads allows us to develop reusable libraries — e.g. verified file I/O functions
— that users can lift into the monad that is appropriate for their application.

The combination of (i) and (ii) does not by itself support synthesis of code
with local state due to inherited limitations of (i), wherein the generated code
must be produced as a concrete list of global declarations. For example, if
monadic functions, say foo and bar, refer to a common reference, say r, the
reference r must be defined globally:

val r = ref 0;
fun foo n = ...; (* code that uses r *)
fun bar n = ...; (* code that uses r and calls foo *)

In this paper (in §4), we introduce a new abstract synthesis mode (iii) which
removes the requirement of generating code that only consists of a list of global
declarations, and, as a result, we are now able to synthesise code such as the
following, where reference r is a local variable.

4

fun pure_bar k n =
let

val r = ref k
fun foo n = ... (* code that uses r *)
fun bar n = ... (* code that uses r and calls foo *)

in Success (bar n) end
handle e => Failure e;

In the input to the synthesis tool, this declaration and initialisation of lo-
cal state corresponds to applying the state-and-exception monad. Expressions
that fully apply the state-and-exception monad can subsequently be used in the
synthesis of pure CakeML code: the monadic synthesis tools can prove a pure
specification for such expressions, thereby encapsulating the monadic features.

3 Generalised approach to synthesis of stateful ML code

This section describes how our previous approach to proof-producing synthesis
of stateful ML code [13] has been generalised. In particular, we explain how the
separation logic from our previous work on characteristic formulae [5] has been
used for the generalisation (§3.3); and how this new approach adds support for
user-defined references, fixed- and variable-length arrays, I/O functions (§3.4),
and a handy feature for reusing state-and-exception monads (§3.5).

In order to make this paper as self-contained as possible, we start with a brief
look at how the semantics of CakeML is defined (§3.1) and how our previous
work on synthesis of pure CakeML code works (§3.2), since the new synthesis
method for stateful code is an evolution of the original approach for pure code.

3.1 Preliminaries: CakeML semantics

The semantics of the CakeML language is defined in the functional big-step
style [14], which means that the semantics is an interpreter defined as a functional
program in the logic of a theorem prover.

The definition of the semantics is layered. At the top-level the semantics
function defines what the observable I/O events are for a given whole program.
However, more relevant to the presentation in this paper is the next layer down:
a function called evaluate that describes exactly how expressions evaluate. The
type of the evaluate function is shown below. This function takes as arguments a
state (with a type variable for the I/O environment), a value environment, and
a list of expressions to evaluate. It returns a new state and a value result.

evaluate : δ state →
v sem_env → exp list → δ state × (v list, v) result

The semantics state is defined as the record type below. The fields relevant
for this presentation are: refs, clock and ffi. The refs field is a list of store values
that acts as a mapping from reference names (list index) to reference and array

5

values (list element). The clock is a logical clock for the functional big-step style.
The clock allows us to prove termination of evaluate and is, at the same time,
used for reasoning about divergence. Lastly, ffi is the parametrised oracle model
of the foreign function interface, i.e. I/O environment.

δ state = <| clock : num ; refs : store_v list ; ffi : δ ffi_state ; . . . |>

where store_v = Refv v |W8array (word8 list) | Varray (v list)

A call to the function evaluate returns one of two results: Rval res for suc-
cessfully terminating computations, and Rerr err for stuck computations.

Successful computations, Rval res, return a list res of CakeML values. CakeML
values are modelled in the semantics using a datatype called v. This datatype
includes (among other things) constructors for (mutually recursive) closures
(Closure and Recclosure), datatype constructor values (Conv), and literal val-
ues (Litv) such as integers, strings, characters etc. These will be explained when
needed in the rest of the paper.

Stuck computations, Rerr err , carry an error value err that is one of the
following. For this paper, Rraise exc is the most relevant case.

– Rraise exc indicates that evaluation results in an uncaught exception exc.
These exceptions can be caught with a handle in CakeML.

– Rabort Rtimeout_error indicates that evaluation of the expression consumes
all of the logical clock. Programs that hit this error for all initial values of
the clock are considered diverging.

– Rabort Rtype_error, for other kinds of errors, e.g. when evaluating ill-typed
expressions, or attempting to access unbound variables.

3.2 Preliminaries: Synthesis of pure ML code

Our previous work [13] describes a proof-producing algorithm for synthesising
CakeML functions from functions in higher-order logic. Here proof-producing
means that each execution proves a theorem (called a certificate theorem) guar-
anteeing correctness of that execution of the algorithm. In our setting, these
theorems relate the CakeML semantics of the synthesised code with the given
HOL function.

The whole approach is centred around a systematic way of proving theorems
relating HOL functions (i.e. HOL terms) with CakeML expressions. In order
for us to state relations between HOL terms and CakeML expressions, we need
a way to state relations between HOL terms and CakeML values. For this we
use relations (int, list _, _ −→ _, etc.) which we call refinement invariants. The
definition of the simple int refinement invariant is shown below: int i v is true if
CakeML value v of type v represents the HOL integer i of type int.

int i = (λ v . v = Litv (IntLit i))

Most refinement invariants are more complicated, e.g. list (list int) xs v states
that CakeML value v represents lists of int lists xs of HOL type int list list.

6

We now turn to CakeML expressions: we define a predicate called Eval in
order to conveniently state relationships between HOL terms and CakeML ex-
pressions. The intuition is that Eval env exp P is true if exp evaluates (in en-
vironment env) to some result res (of HOL type v) such that P holds for res,
i.e. P res. The formal definition below is cluttered by details regarding the clock
and references: there must be a large enough clock and exp may allocate new
references, refs ′, but must not modify any existing references, refs. We express
this restriction on the references using list append ++. Note that any list index
that can be looked up in refs has the same look up in refs ++ refs ′.

Eval env exp P ⇐⇒
∀ refs.
∃ res refs ′ ck .

(evaluate (empty with <|refs := refs; clock := ck|>) env [exp] =
(empty with refs := refs ++ refs ′,Rval [res])) ∧ P res

The use of Eval and the main idea behind the synthesis algorithm is most
conveniently described using an example. The example we consider here is the
following HOL function:

add1 = λ x . x + 1

The main part of the synthesis algorithm proceeds as a syntactic bottom-up
pass over the given HOL term. In this case, the bottom-up pass traverses HOL
term λ x . x + 1. The result of each stage of the pass is a theorem stated in terms
of Eval in the format shown below. Such theorems state a connection between a
HOL term t and some generated code w.r.t. a refinement invariant ref _inv that
is appropriate for the type of t .

general format: assumptions ⇒ Eval env code (ref _inv t)

For our little example, the algorithm derives the following theorems for the
subterms x and 1, which are the leaves of the HOL term. Here and elsewhere in
this paper, we display CakeML abstract syntax as concrete syntax inside b · · · c,
i.e. b1c is actually the CakeML expression Lit (IntLit 1) in the theorem prover
HOL4; similarly bxc is actually displayed as Var (Short “x”) in HOL4. Note that
both theorems below are of the required form.

` T⇒ Eval env b1c (int 1)
` Eval env bxc (int x)⇒ Eval env bxc (int x)

(1)

The algorithm uses theorems (1) when proving a theorem for the compound
expression x + 1. The process is aided by an auxiliary lemma for integer addition,
shown below. The synthesis algorithm is supported by several such pre-proved
lemmas for various common operations.

` Eval env x1 (int n1)⇒
Eval env x2 (int n2)⇒
Eval env bx1 + x2c (int (n1 + n2))

7

By choosing the right specialisations for the variables, x1, x2, n1, n2, the algo-
rithm derives the following theorem for the body of the running example. Here
the assumption on evaluation of bxc was inherited from (1).

` Eval env bxc (int x)⇒ Eval env bx + 1c (int (x + 1)) (2)

Next, the algorithm needs to introduce the λ-binder in λ x . x + 1. This can
be done by instantiation of the following pre-proved lemma. Note that the lemma
below introduces a refinement invariant for function types, −→, which combines
refinement invariants for the input and output types of the function [13].

` (∀ v x . a x v ⇒ Eval (env [n 7→ v]) body (b (f x)))⇒
Eval env bfn n => bodyc ((a −→ b) f)

An appropriate instantiation and combination with (2) produces the following:

` T⇒ Eval env bfn x => x + 1c ((int −→ int) (λ x . x + 1))

which, after only minor reformulation, becomes a certificate theorem for the
given HOL function add1:

` Eval env bfn x => x + 1c ((int −→ int) add1)

Additional notes. The main part of the synthesis algorithm is always a bottom-up
traversal as described above. However, synthesis of recursive functions requires
an additional post-processing phase which involves an automatic induction proof.
We omit a description of such induction proofs since the solution described
previously in [13] is not important for understanding this paper, and works in
essentially the same way for synthesis of recursive stateful functions.

3.3 Synthesis of stateful ML code

Our algorithm for synthesis of stateful ML is very similar to the algorithm de-
scribed above for synthesis of pure CakeML code. The main differences are:

– the input HOL terms must be written in a state-and-exception monad, and
– instead of Eval and −→, the derived theorems use EvalM and −→M ,

where EvalM and −→M relate the monad’s state to the references and foreign
function interface of the underlying CakeML state (fields refs and ffi). These
concepts will be described below.

Generic state-and-exception monad. The new generalised synthesis work-flow
uses the following state-and-exception monad (α, β, γ) M, where α is the state
type, β is the return type, and γ is the exception type.

(α, β, γ) M = α → (β, γ) exc × α

where (β, γ) exc = Success β | Failure γ

8

We define the following interface for this monad type. Note that syntactic
sugar is often used: in our case, we write do n ← foo; return (bar n) od (as was
done in §1) when we mean bind foo (λn. return (bar n)).

return x = (λ s. (Success x ,s))

bind x f =
(λ s. case x s of (Success y ,s) ⇒ f y s | (Failure x ,s) ⇒ (Failure x ,s))

x otherwise y =
(λ s. case x s of (Success v ,s) ⇒ (Success v ,s) | (Failure e,s) ⇒ y s)

Functions that update the content of state can only be defined once the state
type is instantiated. A function for changing a monad M to have a different state
type is introduced in §3.5.

Definitions and lemmas for synthesis. We define EvalM as follows. A CakeML
source expression exp is considered to satisfy an execution relation P if for any
CakeML state s, which is related by state_rel to the state monad state st and state
assertion H , the CakeML expression exp evaluates to a result res such that the
relation P accepts the transition and state_rel_frame holds for state assertion H .
The auxiliary functions state_rel and state_rel_frame will be described below. The
first argument ro can be used to restrict effects to references only, as described
a few paragraphs further down.

EvalM ro env st exp P H ⇐⇒
∀ s.

state_rel H st s ⇒
∃ s2 res st2 ck .

(evaluate (s with clock := ck) env [exp] = (s2,res)) ∧
P st (st2,res) ∧ state_rel_frame ro H (st ,s) (st2,s2)

In the definition above, state_rel and state_rel_frame are used to check that the
user-specified state assertion H relates the CakeML states and the monad states.
Furthermore, state_rel_frame ensures that the separation logic frame rule is true.
Both use the separation logic set-up from our previous work on characteristic
formulae for CakeML [5], where we define a function st2heap which, given a pro-
jection p and CakeML state s, turns the CakeML state into a set representation
of the reference store and foreign-function interface (used for I/O).

The H in the definition above is a pair (h,p) containing a heap assertion
h and the projection p. We define state_rel (h,p) st s to state that the heap
assertion produced by applying h to the current monad state st must be true
for some subset produced by st2heap when applied to the CakeML state s. Here
(*) is the separating conjunction and T is true for any heap.

state_rel (h,p) st s ⇐⇒ (h st * T) (st2heap p s)

The relation state_rel_frame states: any frame F that is true separately from
h st1 for the initial state is also true for the final state; and if the references-
only ro configuration is set, then the only difference in the states must be in

9

the references and clock, i.e. no I/O operations are permitted. The ro flag is
instantiated to true when a pure specification (Eval) is proved for local state §4.

state_rel_frame ro (h,p) (st1,s1) (st2,s2) ⇐⇒
(ro ⇒ ∃ refs. s2 = s1 with refs := refs) ∧
∀F . (h st1 * F) (st2heap p s1)⇒ (h st2 * F * T) (st2heap p s2)

We prove lemmas to aid the synthesis algorithm in construction of proofs.
The lemmas shown in this paper use the following definition of monad.

monad a b x st1 (st2,res) ⇐⇒
case (x st1,res) of
((Success y ,st),Rval [v]) ⇒ (st = st2) ∧ a y v
| ((Failure e,st),Rerr (Rraise v ′)) ⇒ (st = st2) ∧ b e v ′

| _ ⇒ F

Synthesis makes use of the following two lemmas in proofs involving monadic
return and bind. For return x , synthesis proves an Eval-theorem for x . For bind,
it proves a theorem that fits the shape of the first four lines of the lemma and
returns a theorem consisting of the last two lines, appropriately instantiated.

` Eval env exp (a x)⇒ EvalM ro env st exp (monad a b (return x)) H

` ((assums1 ⇒ EvalM ro env st e1 (monad b c x) H) ∧
∀ z v .
b z v ∧ assums2 z ⇒
EvalM ro (env [n 7→ v]) (snd (x st)) e2 (monad a c (f z)) H)⇒

assums1 ∧ (∀ z . (fst (x st) = Success z)⇒ assums2 z)⇒
EvalM ro env st blet n = e1 in e2c (monad a c (bind x f)) H

3.4 References, Arrays and I/O

The synthesis algorithm uses specialised lemmas when the generic state-and-
exception monad has been instantiated. Consider the following instantiation of
the monad’s state type to a record type. The programmer’s intention is that the
lists are to be synthesised to arrays in CakeML and the I/O component IO_fs
is a model of a file system (taken from a library).

example_state =
<| ref1 : int; farray1 : int list; rarray1 : int list; stdio : IO_fs |>

With the help of getter- and setter-functions and library functions for file I/O,
users can conveniently write monadic functions that operate over this state type.

When it comes to synthesis, the automation instantiates H with an appro-
priate heap assertion, in this instance: ASSERT. The user has informed the syn-
thesis tool that farray1 is to be a fixed-size array and rarray1 is to be a resizable-
size array. A resizable-array is implemented as a reference that contains an ar-
ray, since CakeML (like SML) does not directly support resizing arrays. Below,

10

REF_REL int ref1_loc st .ref1 asserts that int relates the value held in a reference
at a fixed store location ref1_loc to the integer in st .ref1. Similarly, ARRAY_REL
and RARRAY_REL specify a connection for the array fields. Lastly, STDIO is a
heap assertion for the file I/O taken from a library.

ASSERT st =
REF_REL int ref1_loc st .ref1 * RARRAY_REL int rarray1_loc st .rarray1 *
ARRAY_REL int farray1_loc st .farray1 * STDIO st .stdio

Automation specialises pre-proved EvalM lemmas for each term that might be
encountered in the monadic functions. As an example, a monadic function might
contain an automatically defined function update_farray1 for updating array far-
ray1. Anticipating this, synthesis automation can, at set-up time, automatically
derive the following lemma which it can use when it encounters update_farray1.

` Eval env e1 (num n) ∧ Eval env e2 (int x) ∧
(lookup_var bfarray1c env = Some farray1_loc)⇒
EvalM ro env st bArray.update (farray1,e1,e2)c
(monad unit exc (update_farray1 n x)) (ASSERT,p)

3.5 Changing monad types

The possibility to change the types of the monad is useful when previously
developed monadic functions (e.g. from an existing library) are to be used as part
of a larger context. Consider the case of the file I/O in the example from above.
The following EvalM theorem has been proved in the CakeML basis library.

` Eval env e (string x) ∧
(lookup_var bprintc env = Some print_v)⇒
EvalM F env st bprint ec (monad unit b (print x)) (STDIO,p)

This can be used directly if the state type of the monad is the IO_fs type.
However, our example above uses example_state as the state type.

To overcome such type mismatches, we define a function liftM which can
bring a monadic operation defined in libraries into the required context. The
type of liftM r w is (α, β, γ) M → (ε, β, γ) M, for appropriate r and w .

liftM read write op = (λ s. (let (ret ,new) = op (read s) in (ret ,write new s)))

Our liftM function changes the state type. A simpler lifting operation can be
used to change the exception type.

For our example, we define stdio f as a function that performs f on the
IO_fs-part of a example_state. (The fib example §1 used a similar stdio.)

stdio = liftM (λ s. s.stdio) (λn s. s with stdio := n)

For synthesis, we prove a lemma that can transfer any EvalM result for the
file I/O model to a similar EvalM result wrapped in the stdio function. Such

11

lemmas are possible because of the separation logic frame rule that is part of
EvalM. The generic lemma is the following:

` (∀ st . EvalM ro env st exp (monad a b op) (STDIO,p))⇒
∀ st . EvalM ro env st exp (monad a b (stdio op)) (ASSERT,p)

And the following is the transferred lemma, which enables synthesis of HOL
terms of the form stdio (print x) for Eval-synthesisable x .

` Eval env e (string x) ∧
(lookup_var bprintc env = Some print_v)⇒
EvalM F env st bprint ec (monad unit exc (stdio (print x))) (ASSERT,p)

4 Local state and the abstract synthesis mode

This section explains how we have adapted the method described above to also
support generation of code that uses local state and local exceptions. These
features enable use of stateful code (EvalM) in a pure context (Eval). We used
these features to significantly speed up parts of the CakeML compiler (see §5).

In the monadic functions, users indicate that they want local state to be
generated by using the following run function. In the logic, the run function
essentially just applies a monadic function m to an explicitly provided state st .

run : (α, β, γ) M → α → (β, γ) exc
run m st = fst (m st)

In the generated code, an application of run to a concrete monadic function,
say bar, results in code of the following form:

fun run_bar k n =
let

val r = ref ... (* allocate, initialise, let-bind all local state *)
fun foo n = ... (* all auxiliary funs that depend on local state *)
fun bar n = ... (* define the main monadic function *)

in Success (bar n) end (* wrap normal result in Success constructor *)
handle e => Failure e; (* wrap any exception in Failure constructor *)

Synthesis of locally effectful code is made complicated in our setting for two
reasons: (1) there are no fixed locations where the references and arrays are
stored, e.g. we cannot define ref1_loc as used in the definition of ASSERT in
§3.4; and (2) the local names of state components must be in scope for all of the
function definitions that depend on local state.

Our solution to challenge (1) is to leave the location values as variables (loc1,
loc2, loc3) in the heap assertion when synthesising local state. To illustrate, we
will adapt the example_state from §3.4: we omit IO_fs in the state because
I/O cannot be made local. The local-state enabled heap assertion is:

LOCAL_ASSERT loc1 loc2 loc3 st =
REF_REL int loc1 st .ref1 * RARRAY_REL int loc2 st .rarray1 *
ARRAY_REL int loc3 st .farray1

12

The lemmas referring to local state now assume they can find the right variable
locations with variable look-ups.

` Eval env e1 (num n) ∧ Eval env e2 (int x) ∧
(lookup_var bfarray1c) env = Some loc3)⇒
EvalM ro env st bArray.update (farray1,e1,e2)c
(monad unit exc (update_farray1 n x)) (LOCAL_ASSERT loc1 loc2 loc3,p)

Challenge (2) was caused by technical details of our previous synthesis meth-
ods. The previous version was set up to only produce top-level declarations,
which is incompatible with the requirement to have local (not globally fixed)
state declarations shared between several functions. The requirement to only
have top-level declarations arose from our desire to keep things simple: each
synthesised function is attached to the end of a concrete linear program that is
being built. It is beneficial to be concrete because then each assumption on the
lexical environment where the function is defined can be proved immediately on
definition. We will call this old approach the concrete mode of synthesis, since
it eagerly builds a concrete program.

In order to support having functions access local state, we implement a new
abstract mode of synthesis. In the abstract mode, each assumption on the lexical
environment is left as an unproved side condition as long as possible. This allows
us to define functions in a dynamic environment.

To prove a pure specification (Eval) from the EvalM theorems, the automation
first proves that the generated state-allocation and -initialisation code establishes
the relevant heap assertion (e.g. LOCAL_ASSERT); it then composes the ab-
stractly synthesised code while proving the environment-related side conditions
(e.g. presence of loc3). The final proof of an Eval theorem requires instantiating
the references-only ro flag to true, in order to know that no I/O occurs (§3.3).

5 Case studies and experiments

In this section we present the runtime and proof size results of applying our
method to some case studies. Performance experiments were carried out on an
Intel i7-2600 running at 3.4GHz with 16 GB of RAM. Full data is available at
https://cakeml.org/ijcar18.zip.

Type Inference and Register Allocation. Both of these phases of the CakeML
compiler are written with a state (and exception) monad, but were previously
synthesised into pure CakeML code. We updated them to use the new synthesis
tool, resulting in performant, stateful CakeML code. The allocator underwent
more significant changes, because we could now use CakeML arrays via the
synthesis tool. It was previously confined to using tree-like functional arrays for
its internal state, leading to logarithmic access overheads. This is not a specific
issue for the CakeML compiler; a verified register allocator for CompCert [3] also
reported log-factor overheads due to (functional) array accesses.

13

Tests were carried out using versions of the bootstrapped CakeML compiler.
We ran each test 50 times on the same input program, recording time elapsed
in each compiler phase. For each test in the register allocation benchmark, we
also compared the resulting executables 10 times, to confirm that both compilers
generated code of comparable quality (i.e. runtime performance).

In the largest program (knuth-bendix), the new register allocator ran 15
times faster (with a wide 95% CI of 11.76–20.93 due in turn to a high standard
deviation on the runtimes for the old code). In the smaller pidigits benchmark,
the new register allocator ran 9.01 times faster (95% CI of 9.01–9.02). Across
6 example input programs, we saw ratios of runtimes between 7.58 and 15.06.
Register allocation was previously such a significant part of the compiler runtime
that this improvement results in runtime improvements for the whole compiler
(on these benchmark programs) of factors between 2 and 9 times.

In contrast, the type inferencer became slower. We compared the performance
of commit 28aba93 (incorporating the monadic inference code) against the same
baseline. The slowdowns ranged between factors of approximately 3 and 1.17.
However, the case with the most dramatic slowdown as a ratio still only repre-
sents a tiny proportion of the total time spent compiling. In this case (pidigits),
the new code takes 10ms out of a total elapsed time of 2.05s (roughly 0.5% of
the total). The best (least bad) case was in an artificial program exemplifying
the worst-case for Hindley-Milner where types grow exponentially. There, the
old code took 251ms and the new took 295ms. The extra indirection through
references in the new code seems to cost performance. We intend to keep using
the purely synthesised version until the compiler optimises the references better.

OpenTheory Article Checker. The type changing feature from §3.5 enabled us to
produce an OpenTheory [7] article checker with our new synthesis approach, and
reduce the amount of manual proof required in a previous version. The checker
reads articles from the file system, and performs each logical inference in the
OpenTheory framework using the verified Candle kernel [8]. Previously, the I/O
code for the checker was implemented in stateful CakeML, and verified manually
using characteristic formulae. By replacing the manually verified I/O wrapper
by monadic code we removed 400 lines of tedious manual proof.

6 Related Work

Effectful code using monads. Our work on encapsulating stateful computations
(§4) in pure programs is similar in purpose to that of the ST monad [11]. The
main difference is how this encapsulation is performed: the ST monad relies
on parametric polymorphism to prevent references from escaping their scope,
whereas we utilise lexical scoping in synthesised code to achieve a similar effect.

Imperative HOL by Bulwahn et al. [4] is a framework for implementing and
reasoning about effectful programs in Isabelle/HOL. Monadic functions are used
to describe stateful computations which act on the heap, in a similar way as §3
but with some important differences. Instead of using a state monad, the authors

14

introduce a polymorphic heap monad – similar in spirit to the ST monad of
Launchbury and Jones [11], but without encapsulation – where polymorphism
is achieved by mapping HOL types to the natural numbers. Contrary to our
approach, this allows for heap elements (e.g. references) to be declared on-the-
fly and used as first-class values. The drawback, however, is that only countable
types can be stored on the heap; in particular, the heap monad does not admit
function-typed values, which our work supports.

More recently, Lammich [10] has built a framework for the refinement of pure
data structures into imperative counterparts, in Imperative HOL. The refinement
process is automated, and refinements are verified using a program logic based
on separation logic, which comes with proof-tools to aid the user in verification.

Both developments [4, 10] differ from ours in that they lack a verified mecha-
nism for extracting executable code from shallow embeddings. Although stateful
computations are implemented and verified within the confines of higher-order
logic, Imperative HOL relies on the unverified code-generation mechanisms of
Isabelle/HOL. Moreover, neither work presents a way to deal with I/O effects.

Verified Compilation. Mechanisms for synthesising programs from shallow em-
beddings defined in the logics of interactive theorem provers exist as components
of several verified compiler projects [1, 12, 6, 13]. Although the main contribution
of our work is proof-producing synthesis, comparisons are relevant as our syn-
thesis tool plays an important part in the CakeML compiler [9]. To the best
of our knowledge, ours is the first work combining effectful computations with
proof-producing synthesis and fully verified compilation.

CertiCoq by Anand et al. [1] strives to be a fully verified optimising compiler
for functional programs implemented in Coq. The compiler front-end supports
the full syntax of the dependently typed logic Gallina, which is reified into a
deep embedding and compiled to Cminor through a series of verified compilation
steps [1]. Contrary to the approach we have taken [13] (see §3.2), this reification is
neither verified nor proof-producing, and the resulting embedding has no formal
semantics (although there are attempts to resolve this issue [2]). Moreover, as of
yet, no support exists for expressing effectful computations (such as in §3.4) in
the logic. Instead, effects are deferred to wrapper code from which the compiled
functions can be called, and this wrapper code must be manually verified.

The Œuf compiler by Mullen et al. [12] is similar in spirit to CertiCoq in that
it compiles pure Coq functions to Cminor through a verified process. Similarly,
compiled functions are pure, and effects must be performed by wrapper code.
Unlike CertiCoq, Œuf supports only a limited subset of Gallina, from which it
synthesises deeply embedded functions in the Œuf-language. The Œuf language
has both denotational and operational semantics, and the resulting syntax is
automatically proven equivalent with the corresponding logical functions through
a process of computational denotation [12].

Hupel and Nipkow [6] have developed a compiler from Isabelle/HOL to
CakeML AST. The compiler satisfies a partial correctness guarantee: if the gen-
erated CakeML code terminates, then the result of execution is guaranteed to
relate to an equality in HOL. Our approach proves termination of the code.

15

7 Summary

This paper describes a technique that makes it possible to synthesise whole
programs from monadic functions in HOL, with automatic proofs relating the
generated effectful code to the original functions. Using the separation logic
from characteristic formulae for CakeML, the synthesis mechanism supports ref-
erences, exceptions, I/O, reusable library developments, and encapsulation of
locally stateful computations inside pure functions. To our knowledge, this is
the first proof-producing synthesis technique with the aforementioned features.

Acknowledgements. The second and fourth authors were partly supported by
the Swedish Foundation for Strategic Research. The fifth author was supported
by an A*STAR National Science Scholarship (PhD), Singapore.

References

1. Anand, A., Appel, A., Morrisett, G., Paraskevopoulou, Z., Pollack, R., Belanger,
O.S., Sozeau, M., Weaver, M.: CertiCoq: A verified compiler for Coq. In: CoqPL
(2017)

2. Anand, A., Boulier, S., Tabareau, N., Sozeau, M.: Typed Template Coq – Certified
Meta-Programming in Coq. In: CoqPL (2018)

3. Blazy, S., Robillard, B., Appel, A.W.: Formal verification of coalescing graph-
coloring register allocation. In: ESOP. LNCS, vol. 6012 (2010)

4. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: Mohamed, O.A., Muñoz, C.A., Tahar,
S. (eds.) TPHOLs. LNCS, vol. 5170, pp. 134–149 (2008)

5. Guéneau, A., Myreen, M.O., Kumar, R., Norrish, M.: Verified characteristic for-
mulae for CakeML. In: Yang, H. (ed.) ESOP. LNCS, vol. 10201, pp. 584–610 (2017)

6. Hupel, L., Nipkow, T.: A verified compiler from Isabelle/HOL to CakeML. In:
Ahmed, A. (ed.) European Symposium on Programming (ESOP). Springer (2018)

7. Hurd, J.: The OpenTheory standard theory library. In: Bobaru, M.G., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM. LNCS, vol. 6617, pp. 177–191 (2011)

8. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: Self-formalisation of higher-order
logic - semantics, soundness, and a verified implementation. J. Autom. Reasoning
56(3), 221–259 (2016)

9. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: Jagannathan, S., Sewell, P. (eds.) POPL. pp. 179–192 (2014)

10. Lammich, P.: Refinement to Imperative/HOL. In: ITP. LNCS, vol. 9236 (2015)
11. Launchbury, J., Jones, S.L.P.: Lazy functional state threads. In: Sarkar, V., Ryder,

B.G., Soffa, M.L. (eds.) PLDI. pp. 24–35 (1994)
12. Mullen, E., Pernsteiner, S., Wilcox, J.R., Tatlock, Z., Grossman, D.: Œuf: mini-

mizing the Coq extraction TCB. In: CPP (2018)
13. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic into

pure and stateful ML. J. Funct. Program. 24(2-3), 284–315 (2014)
14. Owens, S., Myreen, M.O., Kumar, R., Tan, Y.K.: Functional big-step semantics.

In: Thiemann, P. (ed.) ESOP. LNCS, vol. 9632, pp. 589–615 (2016)
15. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:

LICS. pp. 55–74 (2002)

16

