
Steps Towards Verified
Implementations of HOL Light

Magnus O. Myreen1, Scott Owens2, and Ramana Kumar1

1 Computer Laboratory, University of Cambridge, UK
2 School of Computing, University of Kent, UK

Abstract. This short paper describes our plans and progress towards
construction of verified ML implementations of HOL Light: the first for-
mally proved soundness result for an LCF-style prover. Building on Har-
rison’s formalisation of the HOL Light logic and our previous work on
proof-producing synthesis of ML, we have produced verified implementa-
tions of each of HOL Light’s kernel functions. What remains is extending
Harrison’s soundness proof and proving that ML’s module system pro-
vides the required abstraction for soundness of the kernel to relate to
the entire theorem prover. The proofs described in this paper involve the
HOL Light and HOL4 theorem provers and the OpenTheory toolchain.

1 Introduction

We are developing a new verification friendly dialect of ML, called CakeML. This
ML dialect is approximately a subset of Standard ML carefully carved out to be
convenient to program in and to reason about formally. We plan to build verified
implementations of CakeML (a compiler, an implementation of a read-eval-print
loop and possibly custom hardware) and also produce tools for generating and
reasoning about CakeML programs (e.g. tools for synthesising CakeML from
high-level specifications). One of our initial challenge examples is to construct
and verify implementations of HOL Light [1] expressed in CakeML.

This short paper describes our plans and progress towards our HOL Light
case study, which we believe could be the first formal proof of soundness for an
implementation of an LCF-style prover. The theorem we are aiming for relates
the semantics of higher-order logic (i.e. HOL) with the execution of the concrete
machine code which runs the prover. We want to prove that only sound theorems
can be derived in our CakeML implementations.

We build on previous work where Harrison [2] has formalised HOL in the
HOL Light prover, and on our proof-producing synthesis tool [5] for MiniML, a
pure version of CakeML. Throughout, we will simply write ML for CakeML.

2 Method

The following are the high-level steps we have taken in our effort to construct
verified implementations of HOL Light.

HOL Light (OCaml)

monadic functions

deep embedding

machine code

Harrison’s syntax HOLdef

Harrison’s semantics HOLdef semantics

Harrison

this paper

future work

manual extension

manual extension

interactive proof
(soundness)

interactive proof
(soundness)

manual translation

automatic translation certificate theorems

automatic translation compiler verification

manual translation

interactive proof

1. Extending Harrison’s formalisation of HOL. We started by adding
support for user-defined constants, types and axioms to Harrison’s speci-
fication of the syntactic inference rules of HOL. (We have yet to update
Harrison’s soundness proof, i.e. this extension of the inference rules has yet
to be proved sound.) We will refer to this extension as HOLdef.

2. Kernel as monadic functions. Next, we took the sources for the HOL
Light kernel (fusion.ml in the HOL Light code repository) and manually
translated each HOL Light kernel function (written in OCaml) into a def-
inition inside HOL. Since the OCaml code is stateful and uses exceptions,
these HOL functions were written using a state-exception monad. We will
refer to these functions as the monadic functions.

3. Verification of the monadic functions. We then proved that any com-
putation the monadic functions can perform is something HOLdef allows: if
the monadic functions allow construction of a theorem thm then thm is also
derivable in HOLdef. If HOLdef is proved sound, then the monadic functions
are also sound.

Note that, Harrison’s formalisation lives within the HOL Light theorem
prover, but the rest of our work lives within the HOL4 theorem prover [7]. To
bridge this gap, we transported our extension of Harrison’s development from
HOL Light into HOL4 using the OpenTheory toolchain [3]. OpenTheory re-
plays the primitive inferences from one prover inside another.

4. Verified kernel in ML. Next, we constructed an actual ML implemen-
tation, a deep embedding, from the monadic functions. We constructed this

2

ML implementation using an automatic shallow-to-deep-embedding transla-
tor [5] which, for each translation, proves a certificate theorem w.r.t. a formal
specification of the operational semantics of ML. These certificate theorems
allowed us to carry over the correctness results for each monadic function
(shallow embedding) over to the ML code (the deep embedding).

Our original translator only produced pure ML functions. For this work,
we extended our previously developed translator to map the state-exception
monads to appropriate stateful ML constructs.

The final — and currently missing — steps lift our kernel verification to a sound-
ness result for the entire theorem prover running on a verified ML runtime:

5. Verified theorem prover in ML. We then hope to package up the deep
embedding constructed above into an ML module (the HOL Light kernel)
and prove that ML’s module system provides the necessary restrictions which
imply that only the kernel can construct values of type theorem (thm).

6. Verified theorem prover running on a verified ML runtime.

The rest of this paper describes these steps and discusses related work.

2.1 Formalising HOL with a definition mechanism

As mentioned above, we build on Harrison’s formalisation of HOL inside HOL.
We extended his model of the syntax with support for user-defined type operators
(Tyapp) and term constants (Const):

type = Tyvar string | Bool | Ind | Fun type type

| Tyapp string (type list) We added this line

term = Var string type | Equal type | Select type

| Comb term term | Abs string type term

| Const string type . . . and this line.

We also define the ‘state’ of the logic. The state consists of a list of definitions:
a definition defines a new constant, type or axiom:

def = Constdef string term term name, expression
| Typedef string term string string type name, prop, abs, rep
| Axiomdef term statement of axiom

The inference rules were extended to include the new state component. Each
judgement hyps ` concl is now defs, hyps ` concl, where defs is a list of
definitions, i.e. defs has HOL type def list. There are also five new inference
rules: one which allows extension of the definitions with a new definition,

defs, asl ` p ∧ def_ok d defs =⇒ (CONS d defs), asl ` p

and four inference rules which provide theorems that arise from the definitions.
For example, the following inference rule provides a description of a term defi-
nition. The constant name is equal to term tm, if the constant is defined as such
in the list of definitions defs (which must be well-formed).

3

context_ok defs ∧ MEM (Constdef name tm) defs

=⇒ defs, [] ` Const name (typeof tm) === tm

Every attempt was made to be as minimal as possible in the extension of
Harrison’s work. The hope is that his semantics and soundness proof can be
updated to work with this extension of his original formalisation. No attempt
has yet been made to extend his semantics or soundness proof.

2.2 Defining the HOL Light kernel in HOL using monads

We use implementation friendly versions of the main datatypes when defining
the kernel of HOL Light as functions in HOL.

hol type = Tyvar string | Tyapp string (hol type list)

hol term = Var string hol type | Const string hol type

| Comb hol term hol term | Abs hol term hol term

thm = Sequent (hol term list) hol term

The kernel of HOL Light makes use of exceptions and maintains state. The
state consists of three references: the type constants, the term constants,
the axioms. When defining the kernel of HOL Light as functions in HOL (the
monadic functions), we model the state using a record. This record contains two
new components: the definitions keeps track of the ‘state’ of the logic; and
the clash var is used to hold data that should be carried in an exception.3

hol refs = <| the type constants : (string # num) list ;

the term constants : (string # hol type) list ;

the axioms : thm list ;

the definitions : def list ;

the clash var : hol term |>

We then defined each function of HOL Light’s kernel using a state-exception
monad based on this record type. We make use of HOL4’s special syntax for
monads (due to Michael Norrish). For example, HOL Light’s mk const function

let mk const(name,theta) =

let uty = try get const type name with Failure ->

failwith "mk const: not a constant name" in

Const(name,type subst theta uty)

is defined in HOL as follows:

mk const(name,theta) =

do uty <- try get const type name

"mk const: not a constant name" ;

return (Const name (type subst theta uty))

od

3 At the time of writing, CakeML did not support carrying of arbitrary information
in exceptions. This use of an extra reference is our temporary workaround.

4

The monad-bind operator that hides under the syntactic sugar propagates
the state and exceptions appropriately. In some cases, the monadic version is
necessarily more verbose than the original OCaml code, e.g.

let REFL tm = Sequent([],mk eq(tm,tm))

must be split with a semicolon since mk eq is a monadic function:

REFL tm = do eq <- mk eq(tm,tm); return (Sequent [] eq) od

For each of these functions (mk const, REFL, etc.) we proved that the types,
terms, theorems and states they produce are wellformed, given wellformed in-
puts. A theorem is wellformed if it is derivable (`) in our extension of Harrison’s
formalisation of HOL w.r.t. the current list of definitions (the definitions).

2.3 Proof-producing synthesis of stateful ML

The HOL Light kernel, as defined above, carries around state. In the generated
ML, we implement this state using five references, one for each component of
the state record from above. In order to use our previously developed proof-
producing synthesis tool [5], we had to extend it with support for making use of
such top-level references.

The extension essentially just threads a state (from the monadic functions)
and reference store (from the ML semantics) through the entire development. At
each point, the state and the reference store must agree according to a refinement
invariant which relates the two representations of state.

The new state-aware synthesis tool produces deep embeddings and certificate
theorems much like the original tool. For example, the monadic function REFL

from above turns into the following ML code. Bind is translated into ML let.

val REFL = fun tm =>

let val eq = mk eq (Pair tm tm) in Sequent ([], eq) end;

The automatically proved certificate theorem for REFL makes a statement about
the generated ML code (deep embedding) w.r.t. the operational semantics of ML:
if the kernel has been loaded, then the name "REFL" refers to an ML function
(deep embedding), which given an input, returns an output and accesses the state
in a manner that exactly follows the monadic function (shallow embedding).

The details of this extension of our synthesis tool will be described in a
forthcoming extension of the original conference publication [5].

3 Results, discussion and related work

At the time of writing, we have a verified ML implementation (deep embedding)
for each function in HOL Light’s kernel. We have proved that all types, terms and
theorems this ML code produces are wellformed w.r.t. our extension of Harrison’s
formalisation of HOL. What remains is: proving HOLdef sound; proving that the

5

module system successfully prevents construction of theorems (values of type
thm) outside of the kernel; and construction of verified implementations of ML.

Why not verify HOL light as it is? Such a proof would require dealing with
a semantics of OCaml [6]. Real OCaml includes problematic features such as
mutable strings and unsafe primitives (e.g. Obj.magic), which can be used to
seemingly or actually produce unsoundness in HOL Light. As mentioned at the
beginning, our interest lies in developing a verification friendly ML dialect.

Would Wiedijk’s stateless version of HOL light [8] have been easier to verify?
Wiedijk’s version of HOL is very neat. However, the fact that Harrison’s HOL
Light is stateful is not a major hurdle and Harrison’s work on formalising HOL
inside HOL fits better with his version of HOL Light. Our initial efforts concen-
trate on Harrison’s stateful version, but we are also looking into constructing
verified implementations of Wiedijk’s stateless version.

What is the most closely related project? Our previous project [4] on proving
soundness of Davis’ ACL2-inspired Milawa theorem prover had similar aims: to
prove that every theorem admitted by the Milawa system (when run on our
implementation of Lisp) must be true by the semantics of the Milawa logic.

Acknowledgements. Freek Wiedijk initially got us started by asking: “Can
you do for HOL Light what you did for Milawa?” We are also grateful for en-
couragement from John Harrison and appreciate comments received from Mike
Gordon and Dan Synek on drafts this paper. The first author was funded by the
Royal Society, UK, and the third author was funded by the Gates Cambridge
Trust, UK.

References

1. Harrison, J.: HOL Light: An overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) Theorem Proving in Higher Order Logics (TPHOLs). LNCS,
Springer, http://www.cl.cam.ac.uk/~jrh13/hol-light/

2. Harrison, J.: Towards self-verification of HOL Light. In: Furbach, U., Shankar, N.
(eds.) International Joint Conference on Automated Reasoning (IJCAR). LNAI,
Springer (2006)

3. Hurd, J.: The OpenTheory standard theory library. In: Bobaru, M., Havelund, K.,
Holzmann, G.J., Joshi, R. (eds.) NASA Formal Methods. LNCS, Springer (2011)

4. Myreen, M.O., Davis, J.: The reflective Milawa theorem prover is sound (2012),
http://www.cl.cam.ac.uk/~mom22/jitawa/

5. Myreen, M.O., Owens, S.: Proof-producing synthesis of ML from higher-order logic.
In: Thiemann, P., Findler, R.B. (eds.) International Conference on Functional Pro-
gramming (ICFP). ACM (2012)

6. Owens, S.: A sound semantics for OCaml light. In: Drossopoulou, S. (ed.) European
Symposium on Programming (ESOP). LNCS, Springer (2008)

7. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz,
C.A., Tahar, S. (eds.) Theorem Proving in Higher Order Logics (TPHOLs). LNCS,
Springer (2008)

8. Wiedijk, F.: Stateless HOL. In: Hirschowitz, T. (ed.) Types for Proofs and Programs
(TYPES). EPTCS (2009)

6

