
Software Verification with ITPs Should Use
Binary Code Extraction to Reduce the TCB

(short paper)

Ramana Kumar1, Eric Mullen2, Zachary Tatlock2, and Magnus O. Myreen3

1 Data61, CSIRO / UNSW, Australia
2 University of Washington, USA

3 Chalmers University of Technology, Sweden

Abstract. LCF-style provers emphasise that all results are secured by
logical inference, and yet their current facilities for code extraction or
code generation fall short of this high standard. This paper argues that
extraction mechanisms with a small trusted computing base (TCB) ought
to be used instead, pointing out that the recent CakeML and Œuf projects
show that this is possible in HOL and within reach in Coq.

1 Introduction

Software verification is a primary use of interactive theorem provers (ITPs). To
verify a system, one uses the logic of the prover to model the system, specify its
desired properties, and prove that the model satisfies the specification. To run
the verified system, many provers facilitate extracting code from the model, to
be compiled and executed in a mainstream functional language. While widely
used, this approach leads to an unsettlingly large trusted computing base (TCB)
– the unverified components a system depends on for correct construction and
execution. The TCB of conventional extraction includes pretty printers that
“massage” code into the target language (e.g., OCaml or Haskell) without proof,
as well as the target language implementation (unverified compiler and runtime).

Recently, two verification projects, CakeML and Œuf, have shown that code
extraction with a small TCB is possible without a significant increase in verifi-
cation effort. They enable ordinary software verification in a prover, and (mostly
automated) compilation of a verified system within the prover to extract binary
code for execution. The TCB of this approach no longer includes sophisticated
compilation or extraction machinery; binary “extraction” simply prints the lit-
eral bytes of verified machine code to a file outside of the ITP.

In this paper, our first contribution is to explain the principles of the binary
extraction approach taken by CakeML and Œuf to reduce the TCB. For CakeML,
this is the first demonstration of the toolchain outside of compiler bootstrapping.
Our second contribution is a detailed account of what remains in the TCB after
applying binary code extraction, including sketches of how to build a validation
story for the remaining assumptions. We argue that, given the feasibility of these
ideas, all ITP-based software verification projects should strive for a small TCB.



2 Binary Code Extraction Workflow

The main idea of binary extraction is to stay inside the prover until you have
binary code. We show how this workflow naturally extends the conventional
approach with a simple example: computing the frequencies of words in a file.

First, we specify correctness by defining valid wordfreq output, a predicate
that holds when output represents the word frequencies of file_contents:

valid wordfreq output file_contents output ⇐⇒
∃ws.

set ws = set (words of file_contents) ∧ sorted (λ x y . x < y) ws ∧
output = concat (map (λw . format output (w ,frequency file_contents w)) ws)

An output is correct if there is a list of words ws such that the set of words
in ws is the same as the set of words in file_contents; each element in ws is
strictly less than the next one; and output is a concatenation of lines, each of
which corresponds to an element of ws and contains the frequency of that word
in file_contents formatted according to a format output function.

Next, we implement the specification as a functional program inside the logic.
The main function for our example, compute wordfreq output, is defined below
using helpers: insert line inserts each word from a line into an ordered binary
tree; to list flattens an ordered binary tree into a sorted list; and map and foldl
are the usual functions over lists. The format output and words of functions are
the same as in the specification.

compute wordfreq output input_lines =
map format output (to list (foldl insert line empty tree input_lines))

insert line t line = foldl insert word t (words of line)

After defining the functional implementation, we prove that it computes the
desired result. This is where most of the manual proof effort associated with
ITP-based verification is applied. However, by sticking with shallowly embedded
logical functions, we avoid the explosion of details that would arise in a program
logic over a deep embedding. For the word frequency example, we prove the
following theorem in about 100 lines of tactic-based proof script.

` valid wordfreq output file_contents
(concat (compute wordfreq output (lines of file_contents)))

(1)

Conventional approach. One would now use code extraction to pretty print
the verified program into a mainstream functional language like Haskell or
OCaml — crucially without any proof relating a formal semantics of the tar-
get language with either the ITP-generated code or the functions in the logic.

Binary extraction approach. The proposed binary extraction approach takes
a different route, which stays in the logic longer and produces proved guarantees
about the behaviour of the generated code. This route requires some infrastruc-



ture — a synthesis tool and a verified compiler — but these need only be built
once. Here are the steps of binary extraction:

S1: Use proof-producing or verified synthesis to translate the shallowly embedded
logical functions, such as compute wordfreq output, into a deep embedding
in a programming language with a formal semantics. The result is a pure
program that is proved to perform the desired computation.

S2: Add some verified wrapper I/O code so that the program from S1 can interact
with its environment. The result is a complete standalone program. The
previous step (S1) is automatic, but this step (S2) might be interactive or
automatic depending on the desired I/O interaction.

S3: Compile the verified standalone program in the logic so that the compiler’s
correctness theorem can be applied to a theorem about its evaluation, i.e.,

c̀ompile source = compiler output for a particular source and compiler output.

These steps yield a theorem stating that compiler output is a machine-code pro-
gram that performs I/O according to S2 and implements the computation from
S1, which will have been verified against its specification using typical ITP meth-
ods. For our example, the computation is compute wordfreq output, so we connect
the behaviour of compiler output to the valid wordfreq output property via the
algorithm-level theorem (1). Compared with the conventional approach, the only
extra manual effort in S1–S3 is the verification of the I/O wrapper in S2.

Below, we show how S1–S3 are realised in HOL4 by CakeML, and how they
are almost realised in Coq by Œuf. That these ideas are supported (or very
nearly supported) in both provers demonstrates cross-prover applicability.

Binary extraction in CakeML. S1–S3 are supported by different parts of
the CakeML ecosystem and the underlying HOL4 theorem prover. (S1:) Func-
tional programs written in HOL are translated to pure CakeML functions by an
automatic proof-producing synthesis tool [21]; (S2:) the wrapper code is added
to the code from S1 manually and verified using characteristic formulae (CF)
for CakeML [8]; and (S3:) the verified CakeML compiler’s backend [23] is eval-
uated in the logic using HOL4’s evaluation engine by Barras [2]. S1 and S3 are
automatic, while S2 currently requires some expertise from the user.

For our example, S2 involves writing a wrapper like the code shown below
and proving a CF separation-logic-style correctness theorem for it.

val _ = (append_prog o process_topdecs) ‘

fun wordfreq u =

case TextIO.inputLinesFrom (List.hd (CommandLine.arguments()))

of SOME lines =>

TextIO.print_list (compute_wordfreq_output lines) ‘

The first line above instructs HOL4 to add code to the CakeML program being
constructed. The code between the quotation marks, ‘ . . . ‘, is CakeML con-
crete syntax for the top-level CakeML function. compute_wordfreq_output is



the synthesised CakeML function corresponding to the compute wordfreq output
HOL function. Other names refer to functions in the CakeML basis library.

Once S1–S3 have been completed, the theorems from each step are easily
composed to produce an end-to-end correctness theorem4, which we explain
below.

` wfCL [pname; fname] ∧ wfFS fs ∧ hasFreeFD fs ∧
get file contents fs fname = Some file_contents ∧
x64 installed compiler output (basis ffi [pname; fname] fs) mc ms ⇒
∃ io_events ascii_output .

machine sem mc (basis ffi [pname; fname] fs) ms ⊆
extend with resource limit { Terminate Success io_events } ∧
extract fs fs io_events = Some (add stdout fs ascii_output) ∧
valid wordfreq output file_contents ascii_output

(2)

The first two lines make assumptions about the environment, namely: the com-
mand line must consist of two well-formed (wfCL) words, pname and fname; the
file system fs must be well-formed (wfFS) with a free file descriptor (hasFreeFD);
and fname must exist in fs with contents file_contents. The third line is more
interesting and concerns the initial machine state ms. We assume that ms is an
x86-64 machine state where compiler output has been installed into memory and
is ready to go; we also assume that CakeML’s foreign-function interface (basis ffi)
behaves according to our model of the file system and standard streams.

If all these assumptions are true, then the machine-code level execution
(machine sem) will terminate. During execution the machine will perform some
io_events (or some prefix of them, if it runs out of memory). The extract fs line
states that running the file system model fs through the io_events has the effect
of adding some ascii_output to standard output. The last line states that this
ascii_output is correct according to our specification valid wordfreq output.

Binary extraction in Œuf. Œuf accomplishes S1–S3 similarly to CakeML,
but in Coq and building on CompCert [16]. (S1:) A Gallina program is trans-
lated to Œuf functions by an untrusted Coq plugin and translation validated to
ensure equivalence [20]. Œuf then compiles the code to CompCert’s Cminor IR.
(S2:) I/O wrapper code is written in C, compiled to Cminor via CompCert, and
linked to the code from S1. (S3:) The combined stand-alone program is compiled
to assembly using CompCert, relying on tools like Valex to formally validate as-
sembling [13]. An extracted version of the Œuf compiler is still currently used,
since CompCert is not yet fully executable within Coq [17].

For our example, a user would write an I/O wrapper in C similar to:

int main(void) { union list* input = to_coq_str(read_stdin());

union list* freqs = OEUF_CALL(wordfreq, input);

write_stdout(of_coq_str(freqs)); return 0; }

4 https://code.cakeml.org/tree/master/tutorial/solutions



The OEUF_CALL macro constructs a closure and passes arguments to Œuf-extracted
code while to_coq_str and of_coq_str translate between the Œuf string repre-
sentation (lists of Boolean 8-tuples) and the standard C representation (char*).
Proving S2 requires showing that C data conversions and system calls adhere to
the Œuf ABI [20], which we have specified for this example.5 Assuming these
specifications, composing theorems for S1–S3 yields an end-to-end guarantee:

Oeuf.compile(wordfreq′) = OK c ∧ Oeuf.link(c, shim) = OK p ∧
CompCert.compile(p) = OK b ∧ initSt(b, s1)⇒
∃ w τ s2. s1

τ−→ s2 ∧ finalSt(b, s2) ∧ stdIn(τ) = w ∧ stdOut(τ) = wordfreq(w)
(3)

The first two lines relate the original Gallina function, shim (wrapper), and
compiled output for the whole program; and require that state s1 is a valid
initial state, (i.e., that b has been correctly loaded). The final line guarantees
that, under these assumptions, the program will safely execute and terminate in a
final state6 (as CompCert assembly semantics are deterministic) while generating
trace τ of I/O events and that this trace corresponds to reading string w from
standard input and writing wordfreq(w) to standard output. stdIn and stdOut
filter the trace and relate low-level values to Gallina values.

3 Trusted Computing Base

The binary extraction approach yields both a proved result (theorem (2) or (3)),
and the verified binary executable itself (compiler output or b) printed into a file.
To show what remains in the TCB for correct execution, we analyse the CakeML
version of the word frequency example.

The ITP: its logic and implementation. We trust our theorem prover:
that classical higher-order logic is consistent [22, 10, 14], and that the HOL4
kernel implements this logic correctly. Trusting the ITP implementation means
trusting the ∼ 4000 lines of Standard ML code in the kernel, the rationale un-
derlying HOL4’s LCF-based design [19], and the compiler (Poly/ML), OS, and
hardware on which HOL4 runs. It is possible (though we have not done it here) to
obtain externally checkable proof certificates from HOL4 (via OpenTheory [12]),
mitigating the need to trust any specific ITP implementation. These kinds of
trust are intrinsic to any ITP-based approach.

The specification. We need to correctly formalise the desired behaviour
of our program (valid wordfreq output), because it is not checked by any proofs.
However, a specification can be tested by proving sanity-checking theorems about
it and evaluating (the executable parts of) its definition on concrete examples.
Trust across this specification gap is intrinsic to any kind of formal verification.

The extraction procedure. To execute verified code, it must at some
point exit the theorem prover and appear in memory associated with a running
process. We trust the function — a very simple one for binary extraction —

5 https://github.com/uwplse/oeuf/tree/master/demos/word_freq
6 No resource limits are assumed since CompCert semantics model infinite memory.



that reads the code (as a term in logic) and prints it into an executable image
template. We trust that this file is not tampered with, and that the linker (next
paragraph) and OS loader operate correctly. These assumptions are captured
in the x64 installed predicate, which specifies the expected state of the machine
after the executable is loaded. In addition to carefully defining x64 installed, we
could validate this assumption using runtime checks on startup: e.g., that the
registers pointing to the ends of the CakeML heap are valid and aligned. Trusting
something between formal models and reality is unavoidable.

The execution environment. The final theorem is about execution of a
formal machine model (machine sem). We trust the hardware to behave accord-
ing to this model, and that the OS and other processes do not interfere with
the CakeML process. (We model interference and assume it avoids the CakeML
process’s memory [7].) Machine models, like Fox’s L3 models that we use, can be
validated by systematic testing against the hardware [4, 6]. Our verified program
interacts with its environment, and we model how we expect the environment
to behave, with functions like basis ffi and extract fs. The I/O facilities (com-
mand line, files, and standard streams) available in CakeML’s basis library are
supported by a small C interface to the underlying system calls (e.g., open). We
trust our implementation of this interface, and the C compiler (on the interface
code only) and linker. The verified program may exit prematurely if it runs out
of memory: we eliminate this occurrence only by observation.

4 Broader Context and Vision

The ITP community is pursuing several approaches relevant to reducing the TCB
of code extraction. Important aspects of extraction have been proven correct for
Coq [18] and Isabelle/HOL [3, 9]; the CertiCoq [1] team and Hupel & Nipkow [11]
are working toward verified code generators for Coq and Isabelle/HOL respec-
tively; and frameworks like the Isabelle Refinement Framework [15] and Fiat [5]
are exploring other approaches to proof-producing code extraction. CakeML and
Œuf are distinguished by striving to be a natural replacement for conventional
extraction, using conventional programming languages for synthesis, and aiming
to completely eliminate the compiler from the TCB by proving results about the
behaviour of the whole program binary including effectful wrapper code.

Given the advances from throughout the community and the fact that sim-
ilar results are supported across different ITPs, we feel that extraction with a
small TCB is on the cusp of wide-scale feasibility for verified systems. Much is
left to study and build before these approaches achieve the convenience and per-
formance of conventional extraction techniques, but we have demonstrated that
it is already possible to rigorously connect facts established in the logic of an
ITP to binary executable code under a substantially smaller TCB, and without
substantial increase in verification effort. We enthusiastically urge the rest of the
ITP community to adopt and advance the ideas behind binary code extraction.



References

1. Anand, A., Appel, A., Morrisett, G., Paraskevopoulou, Z., Pollack, R., Belanger,
O.S., Sozeau, M., Weaver, M.: CertiCoq: A verified compiler for Coq. In: CoqPL
(2017)

2. Barras, B.: Programming and computing in HOL. In: TPHOLs (2000)
3. Berghofer, S., Nipkow, T.: Executing higher order logic. In: TYPES (2002)
4. Campbell, B., Stark, I.: Randomised testing of a microprocessor model using SMT-

solver state generation. SCP 118, 60–76 (2016)
5. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: Deductive synthesis of

abstract data types in a proof assistant. In: POPL. pp. 689–700 (2015)
6. Fox, A.C.J., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7

instruction set architecture. In: ITP. pp. 243–258 (2010)
7. Fox, A.C.J., Myreen, M.O., Tan, Y.K., Kumar, R.: Verified compilation of CakeML

to multiple machine-code targets. In: CPP. pp. 125–137 (2017)
8. Guéneau, A., Myreen, M.O., Kumar, R., Norrish, M.: Verified characteristic for-

mulae for CakeML. In: ESOP. pp. 584–610 (2017)
9. Haftmann, F., Nipkow, T.: A code generator framework for Isabelle/HOL. In:

TPHOLs (2007)
10. Harrison, J.: Towards self-verification of HOL light. In: IJCAR. pp. 177–191 (2006)
11. Hupel, L., Nipkow, T.: A verified compiler from Isabelle/HOL to CakeML. In:

Ahmed, A. (ed.) European Symposium on Programming (ESOP). Springer (2018)
12. Hurd, J.: The OpenTheory standard theory library. In: NFM. pp. 177–191 (2011)
13. Kästner, D., Leroy, X., Blazy, S., Schommer, B., Schmidt, M., Ferdinand, C.:

Closing the Gap – The Formally Verified Optimizing Compiler CompCert. In:
SSS’17: Safety-critical Systems Symposium 2017. pp. 163–180. Developments in
System Safety Engineering: Proceedings of the Twenty-fifth Safety-critical Sys-
tems Symposium, CreateSpace, Bristol, United Kingdom (Feb 2017), https:

//hal.inria.fr/hal-01399482

14. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: Self-formalisation of higher-order
logic - semantics, soundness, and a verified implementation. JAR 56(3), 221–259
(2016)

15. Lammich, P.: Refinement to Imperative/HOL. In: ITP (2015)
16. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler

with a proof assistant. In: 33rd ACM symposium on Principles of Programming
Languages. pp. 42–54. ACM Press (2006)

17. Leroy, X.: Using coq’s evaluation mechanisms in anger. http://gallium.inria.
fr/blog/coq-eval/ (2015)

18. Letouzey, P.: Extraction in Coq: An overview. In: CiE (2008)
19. Milner, R.: LCF: A way of doing proofs with a machine. In: MFCS. pp. 146–159

(1979)
20. Mullen, E., Pernsteiner, S., Wilcox, J.R., Tatlock, Z., Grossman, D.: Œuf: Mini-

mizing the Coq extraction TCB. In: CPP ’18. pp. 172–185
21. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic into

pure and stateful ML. JFP 24(2-3), 284–315 (2014)
22. Pitts, A.M.: The HOL System: Logic, 3rd edn., https://hol-theorem-prover.

org#doc

23. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A.C.J., Owens, S., Norrish, M.: A new
verified compiler backend for CakeML. In: ICFP. pp. 60–73 (2016)


